Here is a textbook of intuitive calculus. The material is presented in a concrete setting with many examples and problems chosen from the social, physical, behavioural and life sciences. Chapters include core material and more advanced optional sections. The book begins with a review of algebra and graphing.
Author(s): R. A. Rosenbaum, G. P. Johnson
Publisher: CUP
Year: 1984
Language: English
Pages: 439
Cover......Page 1
CALCULUS: Basic concepts and applications......Page 4
9780521095907......Page 5
Contents......Page 6
Preface......Page 12
How this book is organized, and how it can be used......Page 14
Some study hints......Page 16
Goto 15 /FitH 555.1 Fundamental operations; parentheses......Page 18
Goto 15 /FitH 555.2 Zero and negatives......Page 20
Goto 15 /FitH 555.3 Fractions and rational numbers......Page 22
Goto 15 /FitH 555.4 Integral exponents......Page 25
Goto 15 /FitH 555.5 Radicals, fractional exponents, and real numbers......Page 26
Goto 15 /FitH 555.7 Equalities......Page 28
Goto 15 /FitH 555.8 Inequalities......Page 30
Goto 15 /FitH 555.9 Linear equations......Page 33
Goto 15 /FitH 555.10 Quadratic equations......Page 35
Goto 15 /FitH 555.11 Higher-degree equations......Page 37
Goto 15 /FitH 555.12 Progressions......Page 41
Goto 15 /FitH 555.13 Logarithms......Page 44
Goto 15 /FitH 555.14 Keeping track of units......Page 46
Goto 15 /FitH 555.15 Mensuration formulas......Page 47
1.2 An example......Page 50
1.3 Variation of one quantity with another; graphical interpolation......Page 51
1.4 More on graphing, interpolation, and extrapolation......Page 54
1.5 Linear interpolation......Page 58
1.6 Relations expressed by formulas......Page 61
* 1.7 Formulas (continued)......Page 70
1.8 Relationships between science and mathematics......Page 72
1.9 Functions......Page 73
1.10 Further discussion of functions: notation and natural domains......Page 76
1.11 Inverse functions......Page 79
1.13 Summary......Page 82
2.1 Average speed and average velocity......Page 89
2.2 Instantaneous velocity and limits......Page 91
2.3 Theorems on limits......Page 98
* 2.4 Proofs of some results on limits......Page 101
2.5 Average slope in an interval and slope at a point......Page 104
2.6 Tangent to a curve......Page 108
2.7 The derivative......Page 110
* 2.8 Guessing limits with a calculator......Page 118
2.9 Review......Page 120
3.1 The Mean-Value Theorem......Page 127
3.2 Increasing and decreasing functions......Page 129
3.3 Approximate increments......Page 131
3.4 Applications to economics: marginal cost and unit cost......Page 136
3.5 Maxima and minima: the basic idea......Page 140
3.6 How do we know whether we have a maximum or a minimum?......Page 142
3.7 Further questions about maxima and minima......Page 146
3.8 Applied maxima and minima......Page 147
3.9 Maxima and minima in some problems in economics......Page 153
3.10 Approximate solution of equations: the Newton-Raphson Contents method and the bisection method......Page 156
3.11 Review......Page 161
4.1 Repeated differentiation and derived curves......Page 165
4.2 Points of inflection and third test for maxima and minima......Page 169
4.3 Extreme rates......Page 173
4.4 Derivative of a function of a function: the Chain Rule......Page 174
4.5 Continuity......Page 178
* 4.6 Proof that differentiability implies continuity and proof of the Chain Rule......Page 181
4.7 Notation......Page 182
4.8 Related rates......Page 185
4.9 Functions in implicit form and implicit differentiation......Page 188
4.10 Derivatives of fractional powers......Page 190
4.11 Implicit differentiation applied to related rates......Page 191
4.12 Differentials......Page 193
4.13 Formulas for derivatives of products and quotients......Page 195
4.14 Marginal cost, marginal revenue, and optimal production levels......Page 199
* 4.15 Maxima and minima using implicit differentiation......Page 202
4.16 Summary......Page 203
5.1 The reverse of differentiation......Page 211
5.2 The antiderivatives of a given function differ by at most a constant......Page 213
5.3 Formulas for antiderivatives......Page 214
5.4 Repeated antidifferentiation: projectiles thrown vertically......Page 219
5.5 The limit of a sum......Page 222
5.6 Further limits of sums......Page 226
5.7 The Fundamental Theorem......Page 230
5.8 Applications of the Fundamental Theorem......Page 234
5.9 Use of the Chain Rule in integration (antidifferentiation)......Page 239
5.10 The indefinite integral......Page 241
5.11 Summary......Page 242
6.1 Introduction to exponential functions......Page 248
6.2 The rate of change: preliminary remarks......Page 252
6.3 Compound interest......Page 254
6.4 Continuous compounding......Page 257
6.5 The derivative of the exponential function......Page 260
6.6 Relative errors and relative rates......Page 263
6.7 Antiderivatives of the exponential......Page 266
6.8 e^u: derivative and antiderivative......Page 270
6.9 Summary......Page 272
7.2 Inverse functions and the inverse of the exponential......Page 274
7.3 Laws of logarithms......Page 276
7.4 The derivative of the log function......Page 281
7.5 Antiderivatives of 1/x......Page 283
7.6 Derivatives of b^x and log_bx......Page 285
7.7 Log-log and semilog graphs......Page 286
7.8 Summary......Page 291
8.1 Introduction......Page 299
8.2 An approximate solution of a differential equation......Page 301
8.3 Variables separable......Page 303
8.4 Comparison of approximate and exact solutions......Page 304
8.5 Population changes......Page 306
8.6 The logistic equation......Page 307
8.7 The method of partial fractions......Page 308
8.8 The logistic equation (continued)......Page 309
8.9 Linear differential equations with constant coefficients......Page 311
8.10 Linear differential equations with constant coefficients (continued)......Page 316
* 8.11 Approximating the solutions of a pair of simultaneous differential equations......Page 319
9.2 Review of the use of the Chain Rule in integration (antidifferentiation)......Page 325
9.3 Force of attraction......Page 327
9.4 Loads......Page 329
9.5 Moment of a force......Page 331
9.6 Consumers' and producers' surpluses......Page 332
9.7 Horizontal rectangular strips and circular strips......Page 334
9.8 The idea of an average......Page 337
9.9 Average velocity......Page 338
9.10 The average of a function defined on an interval......Page 339
* 9.11 Further averages......Page 342
9.12 Summary......Page 346
9.13 Quadrature......Page 351
9.14 More on quadrature: the trapezoidal rule and its adjustment......Page 353
10.1 Introduction......Page 360
10.2 Angle measure......Page 363
10.3 The sine and cosine functions......Page 366
10.4 The tangent function, and application of the basic functions to triangles......Page 371
10.5 Differentiation of the trigonometric functions......Page 375
10.6 Antidifferentiation and integration of trigonometric functions......Page 380
10.7 Inverse trigonometric functions......Page 382
10.8 Further integration involving trigonometric functions......Page 388
* 10.9 Other periodic functions......Page 392
10.10 A return to differential equations......Page 397
10.11 Summary......Page 403
Answers to selected problems......Page 408
A Compound interest: (1 + r)^n......Page 428
B_1 Values of e^x and e^{-x}......Page 429
B_2 Natural logarithms (In x)......Page 430
C Logarithms, base 10......Page 432
D Trigonometric functions......Page 434
Index......Page 438