Intersections de deux quadriques et pinceaux de courbes de genre 1: Intersections of two quadrics and pencils of curves of genus 1

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Cet ouvrage est consacré � l'arithmétique des surfaces fibrées en courbes de genre 1 au-dessus de la droite projective, et � l'arithmétique des intersections de deux quadriques dans l'espace projectif. Swinnerton-Dyer introduisit en 1993 une technique permettant d'étudier les points rationnels des pinceaux de courbes de genre 1. La première moitié de l'ouvrage reprend et développe cette technique ainsi que ses généralisations ultérieures. La seconde moitié, qui repose sur la première, porte sur les surfaces de del Pezzo de degré 4 et sur les intersections de deux quadriques de dimension supérieure; les résultats annoncés dans [C. R. Math. Acad. Sci. Paris 342 (2006), no. 4, 223--227] y sont démontrés.

This research monograph focuses on the arithmetic, over number fields, of
surfaces fibred into curves of genus 1 over the projective line, and of
intersections of two quadrics in projective space. The first half contains a
complete account of the technique initiated by Swinnerton-Dyer in 1993 for
studying rational points on pencils of curves of genus 1, while incorporating
and generalising most of its subsequent refinements. The second half, which
builds upon the first, is devoted to quartic del Pezzo surfaces and
higher-dimensional intersections of two quadrics. It culminates in the proof
of the results announced in [C. R. Math. Acad. Sci. Paris 342 (2006), no. 4,
223--227].

Author(s): Olivier Wittenberg (auth.)
Series: Lecture Notes in Mathematics
Edition: 1
Publisher: Springer Berlin Heidelberg
Year: 2007

Language: French
Pages: VIII, 218 p. Also available online.
City: Oxford~New York


Content:
Front Matter....Pages I-XXIV
Arithmétique des pinceaux semi-stables de courbes de genre 1 (première partie)....Pages 19-72
Arithmétique des pinceaux semi-stables de courbes de genre 1 (seconde partie)....Pages 73-108
Principe de Hasse pour les surfaces de del Pezzo de degré 4....Pages 109-200
Back Matter....Pages 201-222