Bounds for Optimization of the Reflection Coefficient by Constrained Optimization in Hardy Spaces

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The purpose of this book is twofold. Our starting point is the design of layered media with a prescribed reflection coefficient. In the first part of this book we show that the space of physically realizable reflection coefficients is rather restricted by a number of properties. In the second part we consider a constrained approximation problem in Hardy spaces. This can be viewed as an optimization problem for the frequency response of a causal LTI system with limited gain.

Author(s): Arne Schneck
Year: 2009

Language: English
Pages: 148

Cover......Page 1
Bounds for Optimization of the Reflection Coefficient by Constrained Optimization in Hardy Spaces......Page 5
9783866443822......Page 6
Contents......Page 11
0.1 Motivation......Page 15
0.2 Goals......Page 19
0.3 Overview......Page 20
0.4 Acknowledgements......Page 22
1.1 The Helmholtz equation......Page 25
1.2 Pulses......Page 28
1.3 Dispersion......Page 30
2 Hardy Spaces, LTI Systems and the Paley-Wiener Theorem......Page 35
2.1.1 Hardy spaces on the disk: H^p(\mathbb{D})......Page 36
2.1.2 Hardy spaces on the half-plane: H^p(\mathbb{C}^+)......Page 39
2.2 LTI systems......Page 41
2.3 The Paley-Wiener Theorem......Page 43
3 Scattering Theory for the 1D Helmholtz Equation......Page 47
3.1.1 Jost solutions and an integral formulation......Page 48
3.1.2 Estimates for Jost solutions......Page 49
3.1.3 Reflection and transmission coefficient R and T......Page 52
3.1.4 Further estimates......Page 58
3.2.1 Definition of R and T via an initial value problem......Page 60
3.2.2 Definition of R and T via a boundary value problem......Page 61
3.2.3 A weak formulation......Page 62
3.2.4 Continuity in the weak* topology of L^\infty......Page 64
3.3.1 Changing the surrounding medium......Page 67
3.3.2 Shifting n......Page 70
3.3.3 Hardy space properties of R and T......Page 71
3.4 An optimization problem for the reflection coefficient......Page 75
3.5 Further remarks......Page 77
4 Constrained Optimization in Hardy Spaces: Theory......Page 79
4.1 Existence (1 <= p <= \infty) and uniqueness (1 < p < \infty)......Page 81
4.2 Extremal properties and uniqueness (1 <= p <= \infty)......Page 82
4.4 Approximation by smooth functions, 1 <= p < \infty......Page 90
4.5 Approximation by smooth functions, p = \infty......Page 94
5.1 Discretization......Page 107
5.1.1 Assumptions and notation......Page 108
5.1.2 Semi-discrete problem......Page 109
5.1.3 Fully discrete problem......Page 111
5.2.2 p = 2, exact quadrature......Page 119
5.3 QCQP formulation of the discrete problems......Page 120
5.3.1 p = 2, rectangle rule......Page 121
5.3.2 p = 2, exact quadrature......Page 122
5.3.5 Summary......Page 123
5.4 Second-order cone programs (SOCPs)......Page 124
5.5.1 General strategy to rewrite QCQPs as SOCPs......Page 126
5.5.2 p = 2, rectangle rule......Page 128
5.5.4 p = \infty......Page 129
5.6 Numerical experiments......Page 130
5.6.1 Example 1: Artificial example......Page 132
5.6.2 Example 2: Wideband dispersion compensating mirror......Page 134
5.6.3 Example 3: DCM with pump window......Page 139
Bibliography......Page 145
Back Cover......Page 152