Boron Rich Solids: Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor (NATO Science for Peace and Security Series B: Physics and Biophysics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •Boron-rich solids: science and technology •Synthesis and sintering strategies of boron rich solids •Microcantilever sensors •Screening of the possible boron-based thermoelectric conversion materials; •Ultra-high temperature ZrB2 and HfB2 based composites •Magnetic, transport and high-pressure properties of boron-rich solids •Restrictions of the sensor dimensions for chemical detection •Armor

Author(s): Nina Orlovskaya, Mykola Lugovy
Edition: 1st Edition.
Year: 2010

Language: English
Pages: 375
Tags: Физика;Физика твердого тела;

9048198178......Page 1
CONTENTS......Page 7
LIST OF CONTRIBUTORS......Page 11
PREFACE......Page 17
ACKNOWLEDGMENT......Page 19
1. Introduction......Page 21
2. Experimental......Page 23
3. Results and Discussion......Page 24
References......Page 30
1. Introduction......Page 33
2.1. MODEL ASSUMPTIONS......Page 35
3. Results and Discussion......Page 40
4. Conclusions......Page 45
References......Page 46
1. Introduction......Page 49
2.1. ICOSAHEDRAL BORON-RICH SOLIDS......Page 50
2.1.1. α-rhombohedral boron......Page 51
2.1.2. Boron carbide......Page 52
2.1.3. β-rhombohedral boron......Page 54
2.1.4. Amorphous boron......Page 55
2.1.5. YB66 type structures......Page 56
2.1.6. Bonding forces......Page 57
2.2. HEXABORIDES......Page 58
2.3. DODECABORIDES......Page 61
References......Page 62
1. Introduction......Page 65
2.1. α-RHOMBOHEDRAL BORON STRUCTURE GROUP......Page 66
2.2. β-RHOMBOHEDRAL BORON STRUCTURE GROUP......Page 67
3.1. BAND STRUCTURES......Page 68
3.2. TRANSPORT THEORY......Page 69
4. Experimentally Determined Band Schemes......Page 70
4.1. β-RHOMBOHEDRAL BORON......Page 71
4.2. BORON CARBIDE......Page 75
5. Conclusion and Outlook......Page 78
References......Page 79
MAGNETIC AND THERMOELECTRIC PROPERTIES OF BORON-RICH SOLIDS......Page 83
1. Introduction......Page 84
2.1.1. High temperature ferromagnetism reported in CaB6 and related systems......Page 85
2.1.2. MB2 (M = rare earth, transition metal)......Page 87
2.1.3. PrB4 and EuB6......Page 89
2.2.2. REB50 and REB44Si2......Page 90
2.2.3. REB22CN and related compounds......Page 92
2.2.5. Summary of the magnetism of B12 icosahedral compounds......Page 93
3.2. BOROSILICIDES......Page 95
3.3. BOROCARBONITRIDES......Page 96
3.4.1. Zinc doping......Page 97
3.4.2. Doping with highly electrically conductive materials (metallic borides)......Page 98
References......Page 99
1. Introduction......Page 103
2.1. PROCESSING OF ZrB2–SiC COMPOSITE......Page 105
3.1. MICROSTRUCTURE......Page 106
3.2. SCRATCH STUDIES IN UNOXIDIZED ZrB2–SiC COMPOSITE......Page 107
3.3. SCRATCH STUDIES IN OXIDIZED ZrB2–SiC COMPOSITE......Page 111
References......Page 113
1. Introduction......Page 115
2.1. STRUCTURAL ASPECTS......Page 118
2.2. EXAMPLES OF RINGS IN TERNARY METAL BORIDES......Page 119
2.3. RELATED RINGS IN TERNARY METAL BORIDE CARBIDES......Page 127
2.4. CHAINS IN METAL BORIDES AND BORIDE CARBIDES......Page 129
References......Page 132
1. Introduction......Page 135
2.1. SYNTHESIS, STRUCTURE AND HARDNESS......Page 137
2.2. ELECTRONIC PROPERTIES......Page 139
2.3. ELASTIC AND PLASTIC PROPERTIES......Page 141
3. β-Rhombohedral Boron......Page 142
3.1. SOLID SOLUTION HARDENING......Page 145
4. Conclusion......Page 148
References......Page 149
1. Introduction......Page 151
2. Computational......Page 153
3. Boron in Diamond......Page 154
4. Boron–Carbon Diamond-related Structures......Page 156
5. Conclusion......Page 163
References......Page 164
PROCESSING AND PROPERTIES OF ULTRA-REFRACTORY COMPOSITES BASED ON Zr- AND Hf-BORIDES: STATE OF THE ART AND PERSPECTIVES......Page 167
1. Introduction......Page 168
2. Role of the Sintering Aids on Microstructure......Page 169
3. Effects of Secondary Phases on Densification, Microstructure, Mechanical Properties and Oxidation Resistance......Page 171
4. Densification by Spark Plasma Sintering of UHTC’s......Page 173
5. The Production of UHTC’s through Reactive Processing......Page 174
6. Conclusions......Page 175
References......Page 176
1. Introduction. Graphites and Carbon-Based Materials in Fusion Devices......Page 181
2.1. PRODUCTION METHODS [5]......Page 182
2.1.4. Chemical Vapor Deposition......Page 183
2.1.5. Plasma Chemical Deposition......Page 184
2.2.1. Erosion Under Hydrogen Ion Irradiation......Page 185
2.2.2. Hydrogen Retention in B4C Under Ion Irradiation......Page 186
2.2.4. Composition and Properties of α–H:B–C Layers Redeposited in Plasma Devices Due to B4C Film Erosion......Page 187
3.1. STRUCTURE OF BORON DOPED GRAPHITES......Page 188
3.2. EROSION AND MODIFICATION OF BORON DOPED GRAPHITES UNDER PLASMA IRRADIATION......Page 189
3.3. EROSION AND MODIFICATION OF BORON DOPED CFC UNDER PLASMA IRRADIATION......Page 193
3.4. EROSION OF BORON DOPED GRAPHITES UNDER IRRADIATION IN OXYGEN CONTAMINATED PLASMA......Page 195
3.5. NFLUENCE OF DISSOLVED BORON ON MODIFICATION OF TITANIUM DOPED GRAPHITE UNDER IRRADIATION IN OXYGEN CONTAMINATED PLASMA......Page 196
3.6. THERMO-CHEMICAL INTERACTION OF BORON DOPED GRAPHITES AND BORON CARBIDE WITH OXYGEN GAS......Page 197
4. Conclusions......Page 199
References......Page 200
VIBRATIONAL SPECTROSCOPY OF ADSORBATES ON THE (111) AND (100) SURFACES OF LANTHANUM HEXABORIDE......Page 201
1. Introduction......Page 202
2. Experimental......Page 203
3.1. OXYGEN ON LaB6(111) AND LaB6(100)......Page 204
3.2. CARBON MONOXIDE ON LaB6(111) AND LaB6(100)......Page 205
3.3. CARBON MONOXIDE ON OXYGEN COVERED LaB6(100)......Page 207
3.4. DECABORANE (B10H14) ON THE LaB6(111) SURFACE......Page 209
References......Page 211
1. Introduction......Page 215
2. Electronic Properties of Zirconium Dodecaboride from First-Principles Calculations......Page 217
3. Bulk Versus Surface Superconducting Characteristics of Zirconium Dodecaboride......Page 221
Acknowledgments......Page 224
References......Page 225
1. Introduction......Page 227
2. A Bit of History......Page 228
3. Structure and Properties of a New Phase of Boron, γ-B28......Page 232
4. Conclusions, and What Happens at Still Higher Pressures?......Page 242
References......Page 243
1. Introduction......Page 247
2. Experimental Techniques......Page 248
References......Page 254
1. Introduction......Page 257
2. Experimental Setup......Page 260
3. Electron Transport......Page 262
4. Magnetic Penetration Depth......Page 265
5. Upper and Lower Critical Magnetic Field......Page 269
6. The Fermi Surface of ZrB12......Page 273
Acknowledgement......Page 277
References......Page 278
1. Introduction......Page 281
2.1. MATERIALS AND PROCESSING......Page 283
2.2.2. Mechanical Properties......Page 284
3.1. DENSIFICATION AND MICROSTRUCTURE EVOLUTION......Page 285
3.2. MECHANICAL PROPERTIES......Page 289
References......Page 291
1. Introduction......Page 293
2. Synthesis and Characterization of Non-reactive, Conducting Nanoparticles......Page 296
3.1. THERMAL CONDUCTIVITY......Page 301
3.2. ENHANCED ELECTRICAL CONDUCTIVITY......Page 302
References......Page 303
1. Introduction......Page 307
2. Zr(Hf)B2–SiC UHTC Materials......Page 309
3. Residual Stresses in Zr(Hf)B2–SiC Composites......Page 310
4. Measurement of Residual Stresses by Micro-Raman......Page 312
5. Vibrational Response of ZrB2 and SiC Phases in ZrB2–SiC Composite......Page 313
7. Conclusions......Page 315
References......Page 317
1. Introduction......Page 323
2. Experimental......Page 325
3.1. A SURFACE TRANSFORMATION OF H-BN AND H-BN – LAMP BLACK COMPOSITE AFTER PROCESSING IN AN OPTICAL FURNACE......Page 327
3.2. STRUCTURES PRECIPITATED ONTO A SURFACE OF TITANIUM SUBSTRATE......Page 331
4. Conclusion......Page 336
References......Page 337
1. Introduction......Page 339
2. Experimental......Page 340
3.1. DENSIFICATION......Page 341
3.2. MICROSTRUCTURE......Page 343
3.3. MECHANICAL PROPERTIES......Page 344
4. Conclusions......Page 345
References......Page 346
INDEX......Page 347