Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schroedinger Equations

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrödinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.

The book first studies the particular self-similar singularity solutions (patterns) of the equations. This approach allows four different classes of nonlinear PDEs to be treated simultaneously to establish their striking common features. The book describes many properties of the equations and examines traditional questions of existence/nonexistence, uniqueness/nonuniqueness, global asymptotics, regularizations, shock-wave theory, and various blow-up singularities.

Preparing readers for more advanced mathematical PDE analysis, the book demonstrates that quasilinear degenerate higher-order PDEs, even exotic and awkward ones, are not as daunting as they first appear. It also illustrates the deep features shared by several types of nonlinear PDEs and encourages readers to develop further this unifying PDE approach from other viewpoints.

Author(s): Victor A. Galaktionov, Enzo L. Mitidieri, Stanislav I. Pohozaev
Series: Monographs & Research Notes in Mathematics
Edition: 1
Publisher: Chapman and Hall/CRC
Year: 2014

Language: English
Pages: 568
Tags: Математика;Математическая физика;