Maximize productivity while minimizing environmental impactDevelop sustainable products, energy sources, and processes using the concepts and methods contained in this interdisciplinary resource. Biosystems Engineering discusses how to effectively merge solid design techniques with biology and the applied sciences. Featuring chapters by experts in each field, this authoritative guide explains how to analyze genetic data, design ecosystem models, implement conservation strategies, harness biofuels, and ensure food safety. Full coverage of transgenetic wood production, package engineering, supercritical fluid extraction, and agricultural land management is included.Discover how to:Use microarray technology to classify genes and construct databasesBuild mathematical models and computer simulations of ecosystemsCreate bio-oils and carbon-neutral transportation fuels using pyrolisisSynthesize biodiesel and ethanol from vegetable oil and animal fatPurify and enrich biotechnological products with bioseparationDevelop modified woods and herbicide-resistant crops using transgeneticsExtract antioxidants, supercritical fluids, and bioregulators from plantsDeploy ecologically sound fertilizing, composting, and harvesting methods
Author(s): Ahindra Nag
Edition: 1
Publisher: McGraw-Hill Professional
Year: 2009
Language: English
Pages: 544
Contents......Page 4
Contributors......Page 14
Preface......Page 16
1.1 Introduction......Page 20
1.2 Machine Learning Methods......Page 22
1.2.1 Neural Networks......Page 23
1.2.3 Fuzzy Systems......Page 26
1.2.5 Particle Swarm Optimization......Page 28
1.2.6 Steps in Developing Machine Learning Models......Page 29
1.3.1 cDNA Microarray......Page 32
1.3.2 High-Density Oligonucleotide Array......Page 34
1.4 Low-Level Analysis......Page 35
1.5.1 Clustering......Page 37
1.5.2 Classification......Page 39
1.5.3 Genetic Network Modeling......Page 40
1.6 Summary......Page 45
References......Page 46
Glossary of Terms......Page 50
2.1.1 Definitions......Page 52
2.2.1 Block Diagram Representation......Page 53
2.2.2 Mathematical Representation......Page 55
2.2.3 The Laplace Transform......Page 57
2.2.4 Nonlinearities......Page 63
2.3.1 Response of the System to a Step Input......Page 66
2.3.2 Magnitude and Phase of a Transfer Function......Page 67
2.3.3 Bode Diagram of Transfer Functions......Page 70
2.4 System Identification......Page 76
2.4.1 Excitation Experiments......Page 78
2.4.2 Evaluating Experimental Data......Page 79
2.4.3 Estimating Nonlinearities......Page 81
2.4.4 Parameter Estimation......Page 83
2.5.1 Feedback Control Structure......Page 86
2.5.2 Stability......Page 87
2.5.3 Loop-Shaping Controller Design......Page 88
2.5.4 Controller Design Example: Depth Control for Slurry Injection......Page 92
2.6 Nonlinear Optimization Example: Cruise Control on a Combine Harvester......Page 94
2.6.1 Motivation......Page 95
2.6.3 Control Objective......Page 96
2.6.4 System Modeling......Page 97
2.6.5 Nonlinear MPC......Page 102
2.6.7 Results......Page 105
References......Page 107
3.1 Introduction......Page 110
3.2 Hydrological Cycle......Page 111
3.3 Precipitation......Page 115
3.3.1 Rainfall Measurement......Page 116
3.3.2 Mean Areal Rainfall Depth......Page 117
3.4 Evaporation and Evapotranspiration......Page 118
3.4.1 Some Relevant Concepts and Terminology......Page 119
3.4.2 Energy Balance Method for Estimating Evaporation......Page 120
3.4.3 Dalton's Law......Page 121
3.4.5 Evapotranspiration......Page 122
3.5 Infiltration and Runoff......Page 123
3.5.1 Infiltration......Page 124
3.5.2 Runoff......Page 126
3.5.3 SCS Curve Number Method......Page 127
3.5.4 Rational Method......Page 128
3.6.1 Mechanics of Soil Detachment and Deposition......Page 129
3.6.2 Factors Affecting Soil Erosion and Sediment Yield......Page 131
3.6.3 Types of Soil Erosion......Page 132
3.6.4 Universal Soil Loss Equation......Page 133
3.7 Best Management Practices......Page 136
3.7.1 Commonly Used BMPs......Page 137
References......Page 142
4.1.1 The Soil Thermal Regime......Page 144
4.1.2 Factors Affecting Soil Temperature......Page 145
4.2.2 Effective Thermal Conductivity......Page 147
4.2.4 Determination of Soil Thermal Properties......Page 149
4.3.1 Applications of the Models for Predicting Soil Temperature......Page 158
4.3.2 Methods Used to Build Models for Predicting Soil Temperature......Page 161
4.4 Greenhouse Substrate Heating......Page 165
4.5 Models for Predicting Temperature in Heated Substrates......Page 167
4.6 An Analysis of Electric Cable Heating Systems......Page 173
References......Page 179
5.1 Introduction......Page 188
5.2.1 Need for Watershed Models......Page 189
5.2.3 Characterization of Watershed Models......Page 190
5.2.4 Important Components of Watershed Models......Page 191
5.2.5 Examples of Commonly Used Watershed Models......Page 194
5.3 Geographic Information Systems (GIS)......Page 200
5.4 GIS and Watershed Models......Page 201
5.4.1 Approaches for Interfacing GIS with Watershed Models......Page 203
5.4.2 Challenges with Interfacing......Page 204
5.4.3 Recent State-of-the Art GIS–Integrated Watershed Modeling Systems......Page 205
5.5 Future of GIS-based Watershed Modeling Systems......Page 209
References......Page 210
6.1 Introduction......Page 214
6.2 Physical Properties of Soil......Page 215
6.3.1 Plant Water Relations......Page 216
6.3.2 Assessing Plant Water Needs......Page 217
6.4.1 Meeting the Crop Water Demand......Page 219
6.4.2 Other Benefits of Irrigation......Page 220
6.5.4 Design of Irrigation Systems......Page 221
6.6.2 Methods for Dealing with Excess Water......Page 226
6.7 Salinity Control......Page 228
6.7.2 Methods to Control Salinization......Page 229
References......Page 230
7.1 Introduction......Page 232
7.2.1 Cellulose......Page 234
7.2.3 Lignin......Page 235
7.3 Overview of Biomass Pyrolysis Reactions......Page 236
7.3.1 Mechanism of Primary Reactions......Page 237
7.4 Single-Particle Models......Page 239
7.5.1 Slow Pyrolysis......Page 241
7.5.2 Fast Pyrolysis......Page 242
7.6.1 Chemical Composition of Crude Bio-Oils......Page 245
7.6.2 Fuel Applications of Crude Bio-Oils......Page 250
7.6.3 Producing Chemicals from Bio-Oils......Page 253
7.6.4 Production of Transportation Fuels......Page 257
7.7 Bio-Oil Refineries......Page 259
References......Page 261
8.1 Introduction......Page 272
8.1.1 Transesterification of Vegetable Oils......Page 275
8.1.2 Analyzing the Products......Page 276
8.1.3 Property Measurement of Transesterified Oils......Page 277
8.1.5 Comparing the Effect of Loads on Biodiesel Performance......Page 279
8.1.6 Comparison of the Effect of Load on Biodiesel Emission......Page 280
8.1.7 Exhaust Gas Temperature......Page 284
8.2 Ethanol as an Alternative Fuel......Page 285
8.2.1 Production of Ethanol......Page 286
8.2.2 Effect of Brake Power on Brake Thermal Efficiency......Page 290
8.2.3 Effect of Brake Power on Brake-Specific Diesel Fuel Consumption......Page 291
8.2.4 Effect of Brake Power on Diesel Substitutions at Various Ethanol Fumigation Rates......Page 292
8.2.5 Effect of Brake Power on NO[sub(x)] Emission Levels at Various Ethanol Fumigation Rates......Page 293
8.2.6 Effect of Brake Power on CO Emissions at Various Ethanol Fumigation Rates......Page 294
8.2.7 Effect of Brake Power on Smoke Number at Various Ethanol Fumigation Rates......Page 295
8.2.8 Effect of Brake Power on Exhaust Gas Temperatures at Various Ethanol Fumigation Rates......Page 296
References......Page 297
9.1 Introduction......Page 300
9.2 Different Stages of Bioseparation Process......Page 301
9.3.1 Disruption of Cells......Page 303
9.3.2 Centrifugal Separation......Page 307
9.3.3 Thickening......Page 309
9.3.4 Flocculation......Page 310
9.3.5 Filtration......Page 311
9.3.6 Evaporation......Page 315
9.3.7 Drying and Crystallization......Page 316
9.3.8 Chromatographic Techniques......Page 319
9.3.9 Membrane Technology......Page 324
Further Reading......Page 327
10.1 Introduction......Page 328
10.2 Zoonotic Foodborne Hazards......Page 329
10.3.1 World Trade......Page 330
10.3.2 European Trade......Page 331
10.3.3 Food Safety Targets......Page 333
10.4 Risk Analysis......Page 334
10.4.1 Stages in Risk Assessment......Page 337
10.4.2 Methodologies......Page 338
10.6 Conclusions......Page 339
References......Page 340
11.1 Introduction......Page 344
11.2.1 Packaging Polymers......Page 345
11.2.2 Glass Packaging......Page 351
11.2.3 Metal Packaging......Page 353
11.2.4 Paper and Paper-Based Packaging......Page 356
11.3 Physical Properties of Packaging Materials......Page 357
11.3.1 Mechanical Properties......Page 358
11.3.2 Thermal Properties......Page 359
11.3.3 Optical Properties......Page 360
11.3.4 Properties of Mass Transport......Page 361
11.4 Recent Advances in Packaging......Page 363
References......Page 365
12.1 Introduction......Page 366
12.2.1 Transgenic Trees......Page 367
12.2.2 Challenges for Evaluation and Safety......Page 369
12.3.1 Growth Rate......Page 370
12.3.2 Physical and Mechanical Properties......Page 371
12.3.3 Chemical Composition......Page 374
12.3.4 Durability......Page 377
12.3.5 Advanced Analysis Tools......Page 378
12.3.6 Impacts on Process and Utilization......Page 382
References......Page 383
13.1 Introduction......Page 386
13.2 Determining Oil Content in Oil Seeds and Its Extraction......Page 388
13.2.1 Extracting Oil from Seeds......Page 389
13.3 Refining Edible Oil......Page 393
13.4 Bleaching and Deodorization......Page 394
13.5 Stability of Edible Oils and Antioxidants......Page 398
13.5.1 Mechanism of Antioxidants......Page 399
13.5.2 Functions of Antioxidants......Page 401
13.5.3 Different Types of Antioxidants......Page 402
13.6 Measuring Antioxidant Activities......Page 404
References......Page 408
14.1 Introduction......Page 410
14.2 Olives and Relative Olive Mill Products......Page 411
14.3 Nature of Olive Polyphenols......Page 413
14.4 Antioxidant and Nutraceutical Properties......Page 417
14.5 Future Biotechnological Applications......Page 419
References......Page 420
15.1 Introduction......Page 424
15.1.1 Auxins and the Mineral Status of Fruits......Page 425
15.1.2 Exogenous Use of Gibberellins......Page 427
15.1.3 Retardants Are Also Bioregulators......Page 428
15.1.4 Effect of Retardants on the Mineral Composition of Fruits......Page 429
15.1.5 Effect of Retardants on Calcium Uptake......Page 431
15.2 Fruit Quality......Page 432
15.3 Influence of Retardant and Auxin Treatment of Apple Shoots and Fruits on Calcium Uptake and Distribution......Page 442
15.4 The Effect of Fruitlet Thinning Using Bioregulators on Mineral Content and Storage Quality of Fruits......Page 448
15.5 The Influence of Thinning and Treatment with Calcium Chloride on the Quality of McIntosh Apples Treated with SADH......Page 456
15.5.1 Apple Size......Page 458
15.5.5 Physiological Disorders of Apples during Storage......Page 459
References......Page 461
16.1 Introduction......Page 466
16.2 Supercritical Mass-Transfer Mechanisms......Page 469
16.3 Carbon Dioxide Explosion Processes......Page 470
16.4 Biological Systems Applications......Page 472
16.4.1 Fungal Production of Extractable Oils......Page 473
16.4.2 Extracting Oil from Rice Bran......Page 479
References......Page 482
17.1 Introduction......Page 488
17.2.2 Preparing and Testing the Soil......Page 489
17.2.3 Seed Testing......Page 499
17.2.4 Agricultural Mechanization......Page 502
17.2.5 Manure and Vermicomposting......Page 504
17.2.6 Biological Control......Page 518
17.2.7 Harvesting......Page 520
References......Page 521
A......Page 524
B......Page 525
C......Page 527
D......Page 528
E......Page 529
F......Page 530
G......Page 532
H......Page 533
L......Page 534
M......Page 535
N......Page 536
P......Page 537
S......Page 539
T......Page 542
W......Page 543
Z......Page 544