This book discusses the biorefinery of biomass feedstocks. In-depth chapters highlight the scientific and technical aspects and present a techno-economic analysis of such systems. By using a TEA approach, the authors present feasible pathways for conversion of biomass (both residual biomass, energy crops and algae biomass), showing the different possibilities for the production of biochemical materials, biofuels, and fertilizers. The concepts presented in this book will link companies, investors, and governments by providing a framework that will help reduce pollutants and create a biomass related economy that incorporates the newest developments and technologies in the area
Author(s): Juan-Rodrigo Bastidas-Oyanedel (Editor), Jens Ejbye Schmidt (Editor)
Publisher: Springer
Year: 0
Language: English
Pages: 756
978-3-030-10961-5......Page 1
2019_Bookmatter_Biorefinery......Page 2
Contents......Page 5
Contributors......Page 9
Part I: Biorefineries: General Description......Page 15
1.1 Background......Page 16
1.2 What Is a Biorefinery?......Page 17
1.3 Classification of Biorefineries......Page 19
1.3.2 Second-Generation Biorefineries......Page 20
2.1 Introduction......Page 21
2.2.2 Pannonia Ethanol......Page 24
2.3.2 Proesa®......Page 26
2.3.3 SEKAB Technology......Page 27
2.3.5 POET-DSM Technology......Page 29
3.1.1 Chemtech......Page 30
3.1.2 NatureWorks/Ingeo......Page 31
3.1.3 Futerro......Page 32
3.2.1 Metabolix......Page 33
4.1 Introduction......Page 34
4.3.1 GFBiochemicals......Page 36
4.4.2 OPXBio......Page 37
4.6 Bio-Isobutene......Page 38
5.2 Spirulina Production......Page 39
5.4 Biofertilizer Production......Page 40
6 Conclusion......Page 41
References......Page 42
1 Biomass for Energy: Bioenergy Resource Assessment......Page 49
2 Agricultural Residue Potentials for High-Value Products......Page 51
2.1 Primary Resources......Page 52
2.2 Secondary Resources......Page 53
2.4 Current Use of Residue Resources......Page 54
3 Cost......Page 55
4 Mobilisation of Biomass for Energy and High-Value Products......Page 57
References......Page 59
1 Introduction......Page 61
2 Review of Approaches Used for the Design of (Optimal) Biorefineries......Page 66
2.2 Approach 2: Process Network Synthesis of Biorefineries......Page 67
2.3 Distributed Approach: Motivating Examples......Page 69
3.1 Intermediate Platform and Building Blocks......Page 72
3.2 Mathematical Framework for the Analysis of a Distributed Biorefinery......Page 75
3.3 Illustrative Case Study......Page 77
4.1 ROI-Based Mathematical Framework......Page 79
4.1.2 Foundations of the Framework......Page 80
4.2 Illustrative Case Study for ROI-Based Framework......Page 81
4.2.1 Case 1......Page 82
4.2.2 Case 2......Page 83
5 Summary and Concluding Remarks......Page 85
References......Page 86
Part II: Thermochemical Processes......Page 88
1 Introduction......Page 89
2 Thermal Pyrolysis and Gasification of Secondary Resources and Fuel Mixes......Page 91
3 Fuels and Chemicals......Page 93
3.1 Bio-Oil Production, Separation, and Upgrading......Page 97
4 Char and Ash......Page 99
4.1 Direct (On-Site) Valorization of Char......Page 100
4.2 By-Products with Added Value: Repurposing Char and Ash to Active Carbon and Fertilizers......Page 102
4.2.1 Fertilizer Value of Ashes and Chars from Thermal Biorefinery Processes......Page 103
4.2.2 Activated Carbon......Page 107
5 System Integration......Page 109
5.1 Integration with Water/Steam Electrolysis......Page 110
5.2 Integration with Anaerobic Digestion......Page 112
6 Conclusions......Page 113
References......Page 114
1 Introduction......Page 121
1.1 Biomass Pyrolysis and Composition of Pyrolysis Oil......Page 122
2.1 Vapor-Phase Upgrading......Page 128
3 Bio-oil Hydrotreating......Page 132
4.1 Integrating Pyrolysis Oil into Standard Refineries......Page 136
4.2 Refinery Integration Studies: Co-processing......Page 140
4.3 Co-processing in Other Refinery Unit Operations: Coker......Page 147
4.4 Biomass-Derived Oxygenates in Finished Fuels......Page 148
4.4.1 Properties of Biomass-Derived Oxygenates......Page 149
4.4.2 Regulatory and Commercial Requirements......Page 152
5 Summary......Page 153
References......Page 154
1 Introduction......Page 162
2.1 General Principles......Page 163
2.2 State of the Art......Page 166
2.3 Special Case: Steam Explosion......Page 167
3.1 General Principles......Page 168
3.2.2 Acetic Acid Pulping (Acetosolv, Acetocell, and Biodyne Processes)......Page 169
3.2.3 Current Research......Page 170
4 Summary......Page 171
References......Page 172
Part III: Biodiesel and Water/Ethanol Separation......Page 175
1 Introduction......Page 176
3.1 Feedstocks......Page 177
3.2 Catalysts......Page 179
4.1 Bio-based Feedstocks......Page 181
4.2 Bio-based Catalysts......Page 182
4.3 Green Solvents......Page 183
5 Commercialization of Lipase-Biodiesel Systems......Page 184
References......Page 185
Applications of Ionic Liquids and Deep Eutectic Solvents in Biorefinery-Biodiesel Production......Page 192
1 Introduction......Page 194
2 ILs/DESs in Biomass Lipid Extraction......Page 197
3.1 IL Solvents......Page 199
3.2 DES Solvents......Page 201
4.1 ILs as Catalysts......Page 203
4.1.1 Brønsted Acidic ILs......Page 204
4.1.2 Brønsted Basic ILs......Page 205
4.2 DESs as Catalysts......Page 206
5 IL/DES Biodiesel Purification......Page 208
6 Recovery, Regeneration, and Recycling of ILs/DESs......Page 209
References......Page 213
1 Introduction......Page 218
2 Biorefinery Process......Page 219
3 Ethanol Separation from Fermentation Mixture......Page 220
4 Basics of Membrane Technology......Page 221
5 Methods of Membrane Preparation......Page 222
6 Membrane Separation by Pervaporation......Page 225
7 Ethanol Separation by Organophilic Membrane Pervaporation......Page 226
8 Water Separation by Hydrophilic Membrane Dehydration......Page 230
9 Summary and Outlook......Page 233
References......Page 234
Part IV: Foodwaste as Feedstock......Page 240
1 Current Context in Both Agricultural Waste (ACW) and Agro-Industrial Waste (AIW)......Page 241
2.1 Valorization from the Process......Page 244
2.2 Valorization from the Artisanal Fishery to Food Industry......Page 248
3.1 Solvent Extraction......Page 249
3.2 Supercritical Fluid Extraction (SFE)......Page 250
3.3 Subcritical Water Extraction (SWE)......Page 251
3.4 Solid-State Fermentation (SSF)......Page 252
4 Conclusion: Biorefinery Concept from AIW......Page 253
References......Page 254
1 Introduction......Page 259
2 Food Waste Reduction and Valorization Regulations......Page 261
3.1 Organic Crop Residues......Page 262
3.2 Catering Waste and Derivatives......Page 264
3.2.1 Glycerol as By-Product of Biodiesel with High Potential......Page 266
3.3 Animal By-Products......Page 267
3.5 Domestic Waste......Page 268
4.1 Citrus Peel Residues......Page 269
4.2 Cashew Residues......Page 270
4.3.1 Synthesis of Biodiesel and Glycerol Valorization......Page 272
4.3.3 Nonfuel Applications of Used Cooking Oil......Page 274
5 Integration of Food Waste in Biorefineries......Page 275
5.1 Integrated Biorefineries Based on Specific Food Waste......Page 278
6 Concluding Remarks and Future Prospects......Page 280
References......Page 281
Part V: Fermentation-based Products......Page 284
1 Introduction......Page 285
2.1 Ethanol......Page 288
2.2 Butanol......Page 290
3.1 Farnesene......Page 294
4.1 Lactic Acid......Page 297
4.2 Succinic Acid......Page 300
5.1 Biosurfactants......Page 303
5.2 Bioplastics (PHA)......Page 307
6 Conclusions......Page 310
References......Page 311
1 Historic Perspective......Page 317
2 The Anaerobic Digestion Process......Page 318
2.1 Disintegration and Hydrolysis......Page 319
2.2 Acidogenesis......Page 321
2.3 Acetogenesis......Page 323
3.1 Methane Production Potentials......Page 324
3.2 Pretreatments for Enhancing Methane Production......Page 325
4 Reactor Designs for Wastes and Wastewaters......Page 327
5.1 From Waste Treatment to Resources Processing......Page 331
5.2 Renewable Energy Production......Page 333
5.3.1 Greenhouse Gases Emissions (GHG) Mitigation......Page 334
5.3.2 Better Fertilizer Value of Digestate and Odours Decrease......Page 335
Phosphorous Recovery as Struvite......Page 336
Ammonia Recovery with Hydrophobic Membranes......Page 337
5.3.5 Optimization of VFA Production and Recovery......Page 338
6.1 Electricity Production......Page 339
6.2 Biomethane Production Cost......Page 341
7 Policies Driving Anaerobic Digestion and Biogas Production......Page 342
References......Page 344
1 Introduction......Page 354
2.1 Incineration......Page 355
2.2 Gasification......Page 358
2.3 Pyrolysis......Page 359
3 Biochemical Conversion......Page 360
3.1 Anaerobic Digestion......Page 361
3.1.2 Wet Anaerobic Digestion......Page 362
3.1.3 Nutrient Recovery......Page 364
3.2 Fermentation......Page 365
3.3 Composting......Page 366
4 Chemical Conversion......Page 368
5 Understanding the Carbon Balance and Adding Value through Carbon Capture Technologies......Page 369
References......Page 371
1 Introduction......Page 377
2 Dark Fermentation: Current Status......Page 378
2.1.2 Acidogenesis......Page 379
2.1.3 Acidogenesis Fermentation Metabolism......Page 380
2.2 Dark Fermentation Product Considerations......Page 382
2.2.1 Product Yields and Prices......Page 383
2.2.2 Technological Importance of Dark fermentation Products......Page 384
2.3.1 Dark Fermentation Microbial Population......Page 388
2.3.3 Substrates and Nutrients......Page 389
2.3.6 Headspace Partial Pressure and Dissolved Gas Concentration (Gases Composition)......Page 391
2.3.7 Bioreactor Configuration......Page 392
2.4 Minimal Selling Price of Dark Fermentation Products......Page 394
3.1 Liquid Fuel Production......Page 396
3.2 Fine Chemical Production......Page 398
3.3 Algae, Cyanobacteria, and Phototrophic Bacteria Cultivation......Page 400
3.5 Syngas Dark Fermentation......Page 402
References......Page 404
1 Introduction......Page 415
2.1.2 Water Hyacinth......Page 420
2.1.3 Algal Biomass......Page 421
2.1.4 Food Waste......Page 422
2.1.5 Agricultural Residues......Page 423
2.2.1 Palm Oil Mill Effluent (POME)......Page 424
2.2.3 Textile Wastewater......Page 425
2.2.6 Sago Starch-Processing Wastewater......Page 426
3.1 Carrier-Induced Granular Sludge Bed Reactor (CIGSBR)......Page 427
4 Pilot-Scale Bio-H2 Production Systems Developed in Asia......Page 428
4.2 Pilot-Scale Bio-H2 Production in Korea......Page 429
4.5 Pilot-Scale Bio-H2 Production in Japan......Page 430
5 Brief Outline of the Techno-Economic Analyses of Bio-H2 Production from Organic Waste in Asia......Page 431
6 Summary and Future Perspectives......Page 432
References......Page 433
1 Introduction......Page 438
2.1 Hydrolysis and Acidogenesis......Page 440
2.3 Methanogenesis......Page 445
2.4 Thermodynamics in MCF......Page 447
3.1 H2 Partial Pressure ()......Page 448
3.4 Reactor Types......Page 449
4.1 Two-Stage Fermentation for Hydrogen and Methane Production......Page 450
4.2 H2 and CH4 Upgrading......Page 451
4.4 Electrodialysis for Organic Acids Removal......Page 452
4.5 Thermophilic Microbial Fuel Cells for Energy Recovery......Page 453
5 Conclusions......Page 454
References......Page 455
1 Introduction......Page 462
2.2.1 Semi-Continuously Fed Reactors......Page 464
2.2.2 Batch Experiments......Page 465
2.3 Analytical Methods......Page 466
2.4.3 Bioinformatics Pipeline and Analysis......Page 467
3.1 First Process Insights Based on Semi-Continuously Fed Reactor......Page 468
3.2 Process Understanding and Optimization Based on Batch Experiments......Page 470
3.3.1 Experimental Results......Page 472
3.3.2 Techno-Economic Assessment......Page 473
3.4 In Situ for Product Removal and Yield Increase......Page 474
References......Page 476
1 Introduction......Page 479
2.3 Effect of Total Solid Content on Food Waste Fermentation......Page 481
2.5 Effect of Aeration Pretreatment......Page 482
3.1 Effect of TS Content......Page 483
3.2 Effect of Enzymatic Pretreatment......Page 485
3.3 Effect of Aeration Pretreatment......Page 487
4 Conclusions......Page 488
References......Page 489
1 Introduction......Page 491
2 Bioreactions and Thermodynamics in Syngas Fermentation......Page 493
3 Influencing Factors in Syngas Fermentation......Page 495
3.1 Effect of Temperature......Page 496
3.2 Effect of pH......Page 499
3.3 CO and H2 Partial Pressure......Page 500
3.4 Reactor Configurations......Page 501
4 Process Coupling and Perspectives......Page 502
5 Conclusion......Page 504
References......Page 505
1 Principles and Fundamentals of BES......Page 510
2 Microbial Fuel Cells (MFCs)......Page 514
3 Microbial Electrolysis Cells (MECs) for Hydrogen Production......Page 516
4 Using Electrodes for Fermentation Control: Electro-Fermentation......Page 520
5.1 Methane Production......Page 523
5.2 Production of Soluble Multicarbon Compounds......Page 525
5.3 Bioelectrochemical Systems for the Extraction of Nutrients......Page 526
References......Page 528
1 Introduction......Page 534
2 Methodology......Page 536
2.1 Anaerobic Digestion......Page 539
2.3 Dark Fermentation......Page 540
3.1 Economic Assessment Results......Page 541
4 Conclusions......Page 546
References......Page 547
Part VI: Bio-based Polymers......Page 552
Recent Advances on Enzymatic Catalysis as a Powerful Tool for the Sustainable Synthesis of Bio-Based Polyesters......Page 553
1 Introduction......Page 554
2 Synthesis of Aliphatic Polyesters......Page 555
3 Synthesis of Functional Polyesters......Page 558
4 Synthesis of Aliphatic-Aromatic Polyesters......Page 563
5 Outlook......Page 565
References......Page 566
1 Introduction......Page 569
2 Lignin as a Precious Renewable Resource: Opportunities and Challenges......Page 570
3 Enzymes as Emerging Versatile Catalysts for Lignin Modification......Page 572
4 Laccase-Mediator System......Page 573
6 The Influence of Lignin H, G and S Ratio and Pulping Process on Enzyme Reactivity......Page 575
7.2 Enzymatic Coupling of Functional Groups onto Lignin End Groups......Page 580
References......Page 584
1 Introduction to the GINEXTRA®: Case History......Page 591
2 Spartium junceum: An Unexploited Almost Unknown Biomass......Page 593
3 GINEXTRA® Biorefinery Technology as the Driver of Precious Rural Ecosystem Development......Page 595
4 GINEXTRA®: A Small-Scale Multipurpose Modular and Integrated Biorefinery Technology......Page 596
5 The Spartium junceum Fibre Characterisation......Page 601
6 The GINEXTRA® Biorefinery Side Stream Valorisation Programme for Industrial Uses......Page 603
7 Final Considerations......Page 608
References......Page 610
1 Introduction......Page 613
2 Production Strategies......Page 615
2.2 PHA Production......Page 616
3 Material Performance......Page 619
3.2 Crystallisation......Page 620
3.3 Processing Window......Page 624
4.1 Mass Flows......Page 625
4.2.1 Hydrothermal Processing......Page 627
4.3 Coupling with Water and Waste Management Services......Page 629
References......Page 631
1 Introduction......Page 637
2.1 Process Description......Page 640
3.1 Techno-economic Evaluation for the Base Case Scenario......Page 642
3.3 Sensitivity Analysis: Processing Techniques......Page 645
3.4 Sensitivity Analysis: Product Formulation......Page 647
3.5 Process Upscaling Analysis......Page 649
References......Page 651
Part VII: Seawater/Saltwater-based Biorefineries......Page 653
1 Background......Page 654
2 Saline Soils and Water......Page 655
3 Halophytes......Page 656
3.1 Halophytes for Bioenergy Production......Page 657
3.2.2 Climate......Page 659
3.2.4 Land Area......Page 660
3.3 Halophyte Bioenergy Cultivation Operations......Page 661
References......Page 662
1 Introduction......Page 666
2.2 Material Characterization......Page 667
3.2 Determination of Klason Lignin and Oligosaccharides in Biomass......Page 668
4 Conclusions......Page 672
References......Page 673
1 Introduction......Page 675
2 Materials and Methods......Page 676
2.2 Experimental Setup......Page 677
2.3 Analytical Methods......Page 678
2.4 Process Description for Biorefinery......Page 679
2.4.2 Extraction Phases for Products......Page 680
3.1.1 Temperature Test......Page 682
3.1.2 Salinity Test......Page 683
3.1.3 Selection of Microalgae for Biorefinery......Page 684
3.2 Simulation for Economic Evaluation......Page 685
4 Conclusions......Page 687
References......Page 688
1 Introduction......Page 690
2.3 X-Ray Diffraction (XRD)......Page 692
2.5 Enzymatic Hydrolysis of Pretreated Solids......Page 693
2.6 Simultaneous Saccharification and Fermentation (SSF) of Pretreated Solids.......Page 694
2.9 Inhibition Test of Pretreatment Liquids......Page 695
3.1 Carbohydrates and Lignin Recoveries......Page 696
3.2 Crystallinity Changes......Page 698
3.3 Effects of Different Pretreatment Conditions on Enzymatic Hydrolysis of Pretreated Solids......Page 700
3.4 Effects of Different Pretreatment Conditions on Simultaneous Saccharification and Fermentation (SSF) of Pretreated Solids......Page 701
3.5 Effects of Different Pretreatment Liquids on the Inhibition of Yeast......Page 702
3.6 Screening of Factors for Pretreatment Using Seawater......Page 703
4 Conclusions......Page 704
References......Page 705
1 Introduction......Page 709
2.1 Effect of Heating Rate on Conversion and Reaction Rate......Page 710
FWO Method......Page 712
KAS Method......Page 713
2.2.2 Summary of Parameters......Page 714
3.1 Isoconversional Methods for Kinetic Parameter Estimation Theory......Page 715
3.1.1 Kissinger Method......Page 716
4 Conclusions......Page 717
References......Page 718
1 Introduction......Page 720
2.1 Raw Materials......Page 721
2.2.1 Total Solids and Ash Determination......Page 722
2.2.3 Carbohydrates Content Determination by Strong Acid Hydrolysis......Page 723
2.4 Biogas Potential......Page 725
2.5.3 Elemental Analysis......Page 726
3.1 Chemical Characterization......Page 727
3.2 Elemental Analysis......Page 728
3.3 Methane Production from Macro Algae Samples......Page 729
4 Conclusions......Page 731
References......Page 732
Index......Page 734