It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. The basic experimental and theoretical framework as well as the technical problems and the wide field of applications in the biotechnical, biomedical engineering, engineering, medicine, pharmacology, environmental science and basic science fields are presented in this book. To promote the dialog and mutual penetration between biophoton research and photon technology is one of the important goals for the International Conference on Biophotons & Biophotonics 2003, and is developed and presented in Biophotonics: Optical Science and Engineering in the 21st Century.
Author(s): Xun Shen (Editor), Roeland Van Wijk (Editor)
Edition: 1
Publisher: Springer
Year: 2006
Language: English
Commentary: CD-ROM not included
Pages: 234
CONTENTS......Page 10
1. INTRODUCTION......Page 18
2. METHODS TO PRODUCE A CONFOCAL OR SMALL VOLUME......Page 19
4. FCS: TIME AND AMPLITUDE ANALYSIS......Page 20
5. FLUCTUATIONS IN CELLS: PROTEIN-MEMBRANE INTERACTIONS......Page 24
6. CROSS-CORRELATION METHODS......Page 26
7. CROSS-CORRELATION AND MOLECULAR DYNAMICS......Page 28
10. REFERENCES......Page 30
2. ULTRA HIGH NA OBJECTIVE LENS......Page 32
3.1. Calcium Indicator Dye......Page 35
3.3. Protein Kinase-C......Page 36
3.4. Dynamin......Page 37
3.6. Exocytosis......Page 38
4. DISCUSSION......Page 39
6. REFERENCES......Page 40
1. INTRODUCTION......Page 41
2.1. General Properties of GFP......Page 43
2.2. Application of the GFP Technology for Biophotonic Studies of Programmed Cell Death......Page 44
3.1. The Principle of FRET......Page 47
3.2. Designing a Bio-sensor for Measuring Caspase-3 Activity Based on FRET......Page 48
3.3. In Vitro Characterization of Sensor C3 Using Purified Protein......Page 49
3.4. Application of Sensor C3 to Measure the Dynamic Activation of Caspase-3 in a Single Living Cell During Apoptosis......Page 51
4. ACKNOWLEDGEMENT......Page 53
5. REFERENCE......Page 54
1. INTRODUCTION......Page 55
2. PRINCIPLE OF FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET)......Page 56
3.2. Acceptor Photobleaching Approach......Page 58
4.1. Small Heat Shock Protein 27 and p38 MAP Kinase......Page 59
4.2. Experimental procedures......Page 60
4.3. Results......Page 61
5. DISCUSSION......Page 66
7. REFERENCES......Page 67
1. INTRODUCTION......Page 69
2. OPTICAL COHERENCE TOMOGRAPHY......Page 70
3.1.Doppler OCT......Page 75
3.2. Polarization Sensitive OCT......Page 79
3.3. Second Harmonic OCT......Page 82
6. REFERENCES......Page 85
1. INTRODUCTION......Page 88
2. PRINCIPLES OF LASER SPECKLE IMAGING......Page 90
4. RESULTS......Page 92
5. DISCUSSIONS......Page 97
7. REFERENCES......Page 98
1. INTRODUCTION......Page 100
2.1. Reagents......Page 101
2.2. Experimental setup......Page 102
3.1. Measurement of photosensitized chemiluminescence mediated by FCLA in model solution......Page 103
3.2. Effects of quenchers and D[sub(2)]O on photosensitized chemiluminescence mediated by FCLA in model solution......Page 104
3.3. Imaging of photosensitized chemiluminescence mediated by FCLA in tumor-bearing nude mouse......Page 105
3.4. Measurement of sonosensitized chemiluminescence mediated by MCLA in model solution......Page 106
3.6. The Time-dependence of FCLA retention in cells......Page 109
4. CONCLUSIONS......Page 110
6. REFERENCES......Page 111
2. THE FUNCTION AND STRUCTURE OF MOLECULAR CHAPERONES......Page 113
4.2. The expression and distribution of MRJ in the cells......Page 115
4.3. The luminescence assays for the luciferase refolding facilitated by MRJ......Page 117
5. DISCUSSION......Page 120
7. REFERENCES......Page 121
1. BASIC REMARKS......Page 122
2. CLASSICAL VERSUS QUANTUM COHERENCE......Page 127
3. EXPERIMENTAL SITUATION......Page 133
5. REFERENCES......Page 135
1. INTRODUCTION......Page 138
2. PHOTO COUNT STATISTICS OF A SQUEEZED STATE......Page 141
3. MATERIALS AND METHOD......Page 143
4. RESULTS AND DISCUSSIONS......Page 144
5. IMPLICATIONS OF SQUEEEZED STATE......Page 147
5.1. Possible semi classical scenario of biophoton emission......Page 148
5.2. Vitality indicators and indices of vitality......Page 151
5.3. New vistas of reality......Page 152
6. REFERENCES......Page 153
1. INTRODUCTION......Page 154
2. PATHWAYS OF OXYGEN CONSUMPTION IN LIVING ORGANISMS......Page 155
3.1. Biophoton Emission from Non-diluted Human Blood......Page 157
3.2. Autoregulation in Model Aqueous Systems Related to ROS Production and EEE Generation......Page 161
3.3. Probable role of water......Page 165
4. GENERAL CONCLUSIONS......Page 166
5. REFERENCES......Page 167
1. INTRODUCTION......Page 168
2.1. Photon Counting Imaging and Spatiotemporal Analysis......Page 169
2.2. CCD Imaging......Page 171
3. CHARACTERIZATION OF BIOPHOTON PHENOMENA FOR BIOLOGICAL MEASUREMENTS AND APPLICATIONS......Page 172
3.1. Plants......Page 173
3.3. Rat Brain......Page 176
3.4. Human body......Page 181
5. ACKNOWLEDGEMENTS......Page 182
6. REFERENCES......Page 183
1. INTRODUCTION......Page 185
2. SPONTANEOUS PHOTON EMISSION AND DELAYED LUMINESCENCE FROM HUMAN SKIN......Page 186
3. DETERMINATION OF TIME SLOTS FOR RECORDING PHOTON EMISSION......Page 187
4. TOPOGRAPHICAL VARIATION OF SPONTANEOUS PHOTON EMISSION......Page 188
5. EFFECTS OF COLORED FILTERS ON SPONTANEOUS VISIBLE EMISSION......Page 190
8. DISCUSSION......Page 193
10. ACKNOWLEDGEMENTS......Page 195
11. REFERENCES......Page 196
1.2. History......Page 197
1.4. Ultraweak photons in cultured cells......Page 198
2.2. Classical Biophotonic Measurements in Human Skin Cells......Page 199
2.3. Delayed Luminescence Measurements in Mammalian Cells after UVA laser induction......Page 200
3.1. Biophotonic emission in cultured cells with the classical design......Page 201
3.2. Ultraweak photon emission in mammalian cells following irradiation with a nitrogen laser in the UVA-range......Page 203
3.3. Conclusion......Page 204
5. REFERENCES......Page 205
1. INTRODUCTION......Page 207
2.2. Measurement of BPE of germinating barley seeds......Page 208
3.1. BPE of germinating barley seeds......Page 209
3.2. DL of plant leaves......Page 213
4. CONCLUSION......Page 214
5. REFERENCE......Page 215
1.1. Overview of the Plant Defense Cascade System......Page 217
1.3. Approach to Possible Sources of Photon Emission in the Defense System......Page 218
2.3. Application of 2, 4-Dichlorophenoxyacetic Acid......Page 219
2.5. Spectral Analyses......Page 220
2.7. Photon Emission and Enzyme Reactions In Vivo......Page 221
3.1. Time-Dependent Analyses of Biophoton Emission......Page 222
3.3. Comparative Analyses with 2, 4-D and Alternating Temperature Treatments......Page 223
4. DISCUSSION......Page 227
5. SUMMARY......Page 229
6. REFERENCES......Page 230
C......Page 231
I......Page 232
P......Page 233
Z......Page 234