This is an ideal text for an introduction to biomedical engineering. The book presents the basic science knowledge used by biomedical engineers at a level accessible to all students and illustrates the first steps in applying this knowledge to solve problems in human medicine. Biomedical engineering now encompasses a range of fields of specialization including bioinstrumentation, bioimaging, biomechanics, biomaterials, and biomolecular engineering. This introduction to bioengineering assembles foundational resources from molecular and cellular biology and physiology and relates them to various sub-specialties of biomedical engineering. The first two parts of the book present basic information in molecular/cellular biology and human physiology; quantitative concepts are stressed in these sections. Comprehension of these basic life science principles provides the context in which biomedical engineers interact. The third part of the book introduces the sub-specialties in biomedical engineering, and emphasizes - through examples and profiles of people in the field - the types of problems biomedical engineers solve.
Author(s): W. Mark Saltzman
Series: Cambridge Texts in Biomedical Engineering
Edition: 1
Publisher: Cambridge University Press
Year: 2009
Language: English
Pages: 656
Cover......Page 1
Half-title......Page 3
Series-title......Page 5
Title......Page 7
Copyright......Page 8
Contents......Page 11
Preface......Page 15
TO THE INSTRUCTOR......Page 16
Acknowledgments......Page 19
Abbreviations and Acronyms......Page 21
1.1 Prelude......Page 25
1.2 Engineering in modern medicine......Page 28
1.3 What is biomedical engineering ?......Page 30
1.3.1 We can learn something about biomedical engineering from standard definitions......Page 31
1.3.2 Biomedical engineers seek to understand human physiology and to build devices to improve or repair it......Page 33
1.3.3 Biomedical engineering has been taught in universities for many decades, but is growing at present......Page 36
1.3.4 Biomedical engineering can be divided into subdisciplines......Page 37
PHYSIOLOGICAL MODELING......Page 38
BIOMEDICAL IMAGING......Page 40
BIOMOLECULAR ENGINEERING......Page 41
SYSTEMS BIOLOGY......Page 43
1.4 Biomedical engineering in the future......Page 44
TO THE STUDENT......Page 46
Summary......Page 47
FURTHER READING......Page 49
USEFUL LINKS ON THE WORLD WIDE WEB......Page 50
PROBLEMS......Page 51
PART 1 MOLECULAR AND CELLULAR PRINCIPLES......Page 53
2.1 Prelude......Page 55
2.2.1 Atomic bonding......Page 57
2.2.2 Molecular bonding......Page 59
2.3 Water: The medium of life......Page 60
2.4 Biochemical energetics......Page 62
2.5.1 Hydrogen ions and water......Page 68
2.5.3 Acids and bases......Page 69
WEAK ACIDS AND BASES......Page 70
THE HENDERSON–HASSELBALCH EQUATION......Page 72
2.6 Macromolecules: Polymers of biological importance......Page 73
MONOMER DIVERSITY......Page 74
LIPIDS......Page 75
FUNCTIONAL GROUPS IN MONOMERS......Page 76
2.6.2 Carbohydrates......Page 77
2.6.3 Nucleic acids......Page 79
NUCLEOTIDES......Page 80
NUCLEIC ACID HYBRIDIZATION......Page 81
2.6.4 Proteins......Page 83
2.7.1 Chemical structure of lipids......Page 86
2.7.2 Structure of the cell membrane......Page 87
2.7.3 Transport across the cell membrane......Page 88
Summary......Page 92
DIFFUSION......Page 93
KEY CONCEPTS AND DEFINITIONS......Page 95
NOMENCLATURE......Page 100
PROBLEMS......Page 101
3.1 Prelude......Page 106
3.2 Overview: Genetics and inheritance......Page 110
3.3.1 DNA structure......Page 117
3.3.2 DNA replication......Page 120
3.4 The central dogma: Transcription and translation......Page 125
3.4.1 Gene transcription: RNA synthesis......Page 126
3.4.2 RNA processing......Page 128
3.4.3 mRNA translation: Protein synthesis......Page 129
3.5 Control of gene expression......Page 131
3.6 Recombinant DNA technology......Page 134
3.6.1 Molecular cloning......Page 136
HOW IS A GENE AMPLIFIED OR CLONED?......Page 137
HOW IS RNA CLONED?......Page 141
CLONING BY PCR......Page 143
GENETICALLY MODIFIED ORGANISMS......Page 144
ANIMAL MODELS OF HUMAN DISEASES......Page 146
GENETIC TESTING......Page 147
Summary......Page 148
FURTHER READING......Page 149
KEY CONCEPTS AND DEFINITIONS......Page 151
QUESTIONS......Page 157
PROBLEMS......Page 158
4.1 Prelude......Page 165
4.2 Protein structure......Page 167
4.2.1 Primary, secondary, tertiary, and quaternary structure......Page 168
4.2.2 Determination of protein structure......Page 172
4.2.3 Protein diversity and protein function......Page 173
4.3 Modification and processing of polypeptides......Page 174
4.4 Enzymes......Page 178
Summary......Page 183
USEFUL LINKS ON THE WORLD WIDE WEB......Page 184
KEY CONCEPTS AND DEFINITIONS......Page 186
QUESTIONS......Page 188
PROBLEMS......Page 189
5.1 Prelude......Page 192
5.2 Cell structure and function......Page 194
5.3 ECM......Page 198
5.4 Molecules in the cell membrane......Page 199
FACILITATED TRANSPORT VIA TRANSPORTERS......Page 200
SECONDARY ACTIVE TRANSPORT......Page 201
ION TRANSPORT, MEMBRANE POTENTIALS, AND ACTION POTENTIALS......Page 202
RECEPTOR-MEDIATED ENDOCYTOSIS AND SIGNALING......Page 203
5.4.2 Membrane proteins that regulate cell adhesion......Page 204
5.5.1 The cell cycle......Page 206
5.5.2 Control of cell cycle......Page 209
5.6 Cell differentiation and stem cells......Page 210
5.7 Cell death......Page 212
5.8 Cell culture technology......Page 213
5.8.1 Sources of cultured cells......Page 214
Summary......Page 217
USEFUL LINKS ON THE WORLD WIDE WEB......Page 219
KEY CONCEPTS AND DEFINITIONS......Page 220
QUESTIONS......Page 223
PROBLEMS......Page 224
PART 2 Physiological Principles......Page 227
6.1 Prelude......Page 229
6.2 Signaling fundamentals......Page 234
6.2.1 Cell surface receptors......Page 235
6.2.2 Second messengers......Page 237
6.3 The nervous system......Page 238
6.3.1 Neuron structure and action potential......Page 239
6.3.2 Neurotransmitter signaling......Page 242
SIGNALING THROUGH DIRECTLY GATED RECEPTORS......Page 244
SIGNALING THROUGH INDIRECTLY GATED RECEPTORS......Page 245
6.4.1 Hormones......Page 246
6.4.2 Protein hormone signaling......Page 248
6.4.3 Steroid hormone signaling......Page 250
6.5.1 Overview......Page 251
6.5.2 T cell receptor signaling......Page 255
6.5.3 Cytokine signaling......Page 257
6.6 Connections to biomedical engineering......Page 258
Summary......Page 260
NERVOUS SYSTEM......Page 262
USEFUL LINKS ON THE WORLD WIDE WEB......Page 263
KEY CONCEPTS AND DEFINITIONS......Page 264
SUBSCRIPTS......Page 267
QUESTIONS......Page 268
PROBLEMS......Page 269
7.1 Prelude......Page 271
7.2 Introduction to mass balances......Page 273
7.2.1 Assumptions, predictions, and models: water balance in the body......Page 275
7.2.2 Tracer balance in the body......Page 279
7.2.3 Homeostasis, steady state, and equilibrium......Page 281
7.3 Respiratory physiology......Page 284
7.3.1 Ventilation rates......Page 289
7.3.2 Oxygen carriage in the blood......Page 292
7.3.3 Carbon dioxide carriage and acid-base balance in the blood......Page 295
7.3.4 Diffusion......Page 297
7.4 Digestion and metabolism......Page 300
7.4.1 Organs of the digestive system and their function......Page 303
7.4.2 Digestion and metabolism......Page 307
7.4.3 Modeling the digestive tract......Page 310
Summary......Page 315
KEY CONCEPTS AND DEFINITIONS......Page 316
NOMENCLATURE......Page 318
PROBLEMS......Page 320
8.1 Prelude......Page 339
8.2 The circulating fluid......Page 340
8.3.1 Overall design of the vascular system......Page 343
8.3.2 Arteries and veins......Page 349
8.3.3 Capillary function......Page 353
8.4 The heart......Page 356
8.4.1 Electrical activity of the heart......Page 357
8.4.2 Cardiac conduction and coupling to contraction......Page 358
8.4.3 Cardiac cycle......Page 359
Summary......Page 361
KEY CONCEPTS AND DEFINITIONS......Page 363
NOMENCLATURE......Page 364
QUESTIONS......Page 365
PROBLEMS......Page 366
9.1 Prelude......Page 369
9.2 Examples of elimination of molecules from the body......Page 371
9.3 Biotransformation and biliary excretion......Page 374
9.4 Elimination of molecules by the kidneys......Page 376
9.4.1 Filtration in the glomerulus......Page 379
9.4.2 Clearance and excretion in the urine......Page 384
9.4.3 Reabsorption and secretion in the tubules......Page 386
Summary......Page 393
KEY CONCEPTS AND DEFINITIONS......Page 394
QUESTIONS......Page 396
PROBLEMS......Page 397
PART 3 Biomedical Engineering......Page 399
10.1 Prelude......Page 401
10.2 Mechanical properties of materials......Page 402
10.2.1 Elastic deformation and Young’s modulus......Page 404
10.2.2 Plastic deformation......Page 405
10.2.3 Energy storage with deformation......Page 407
10.3 Mechanical properties of tissues and organs......Page 409
10.3.1 Bone structure and function......Page 411
10.3.2 Structure and function in soft connective tissues......Page 413
10.3.3 Mechanical aspects of lung function......Page 414
10.4 Cellular mechanics......Page 418
10.4.1 Mechanical properties of cells......Page 419
10.4.2 Mechanical properties of the cytoskeleton......Page 420
10.4.3 The effects of mechanical forces on cells......Page 421
REFERENCES......Page 422
KEY CONCEPTS AND DEFINITIONS......Page 423
NOMENCLATURE......Page 424
QUESTIONS......Page 425
PROBLEMS......Page 426
11.1 Prelude......Page 429
11.2 Overview of measurement systems......Page 432
11.3.1 Thermal sensors......Page 435
11.3.3 Electrical sensors......Page 437
11.3.4 Chemical sensors......Page 440
11.3.5 Optical sensors......Page 441
11.4 Instruments in medical practice......Page 442
11.4.1 Measurement of body temperature......Page 443
11.4.2 Measurement of blood pressure......Page 447
11.4.3 Measurement of oxygen saturation in the blood......Page 448
11.4.4 Measurement of blood glucose......Page 450
11.4.5 Measurement of cardiac electrical potential by ECG......Page 451
11.4.6 Devices for electrical stimulation of tissues......Page 455
11.5.1 Measurement of pH......Page 456
11.5.2 Spectrophotometry......Page 457
11.6 Biosensors......Page 460
11.7 Biomicroelectromechanical systems and lab-on-a-chip devices......Page 461
Summary......Page 463
USEFUL LINKS ON THE WORLD WIDE WEB......Page 464
KEY CONCEPTS AND DEFINITIONS......Page 466
NOMENCLATURE......Page 468
PROBLEMS......Page 469
12.1 Prelude......Page 472
12.2 X-rays and CT......Page 476
12.2.1 Conventional x-ray imaging......Page 477
12.2.2 CT......Page 480
12.3.1 Image generation......Page 483
12.3.2 Doppler imaging......Page 484
12.4 Nuclear medicine......Page 486
12.4.1 Nuclear medicine imaging methods......Page 487
12.4.2 Nuclear medicine applications......Page 488
12.4.3 Operation of a gamma camera......Page 489
12.5 Optical bioimaging......Page 491
12.5.1 Fluorescence and confocal imaging......Page 494
12.5.2 Endoscopy and fiber optics......Page 495
12.6 MRI......Page 496
12.7 Image processing and analysis......Page 499
12.7.1 Digitization......Page 500
12.7.2 Image enhancement......Page 501
12.7.3 Registration and segmentation......Page 504
FURTHER READING......Page 506
KEY CONCEPTS AND DEFINITIONS......Page 507
NOMENCLATURE......Page 509
PROBLEMS......Page 510
13.1 Prelude......Page 512
13.2 Drug delivery......Page 514
13.2.1 Nondegradable polymeric reservoirs and matrices......Page 517
13.2.2 Biodegradable polymeric devices......Page 520
13.2.4 Genetically engineered cells for controlled drug delivery......Page 521
13.3 Tissue engineering......Page 522
13.3.1 Strategies of tissue engineering......Page 523
13.3.3 Example of tissue engineering: Artificial skin......Page 525
13.4 Nanobiotechnology......Page 532
13.5 Other areas of biomolecular engineering......Page 535
REFERENCES......Page 536
KEY CONCEPTS AND DEFINITIONS......Page 539
QUESTIONS......Page 543
PROBLEMS......Page 544
14.1 Prelude......Page 547
14.2 Antigens, Abs, and mAbs......Page 549
14.3 What are Abs?......Page 551
14.4 How can specific Abs be manufactured?......Page 554
14.5 Clinical uses of Abs......Page 556
14.5.1 Passive immunization......Page 557
14.5.2 Immunotherapy with Ab–toxin conjugates......Page 558
14.6 Vaccines......Page 559
SMALLPOX......Page 560
POLIOVIRUS......Page 562
HEPATITIS B INFECTION......Page 565
14.6.3 Approaches to vaccine development......Page 566
HIV VACCINES......Page 567
DNA VACCINES......Page 568
Summary......Page 570
KEY CONCEPTS AND DEFINITIONS......Page 571
PROBLEMS......Page 575
15.1 Prelude......Page 577
15.2.1 Historical uses of biomaterials......Page 578
BIOMATERIALS THAT CONTACT BLOOD......Page 581
IMPLANTED MATERIALS AND THE FOREIGN BODY RESPONSE......Page 583
15.3 Hemodialysis......Page 584
15.4 Membrane oxygenators......Page 593
15.5 Artificial heart......Page 594
15.6.1 Cell-based treatments for diabetes......Page 598
15.6.2 Artificial liver......Page 602
REFERENCES......Page 606
FURTHER READING......Page 607
KEY CONCEPTS AND DEFINITIONS......Page 608
SUBSCRIPTS......Page 609
PROBLEMS......Page 610
16.1 Prelude......Page 612
16.2 Introduction to cancer......Page 613
16.3 Surgery......Page 614
16.4 Radiation therapy......Page 616
16.5 Chemotherapy......Page 624
16.6 Hormonal and biological therapies......Page 629
16.7 Systems biology, biomedical engineering, and cancer......Page 633
Summary......Page 639
KEY CONCEPTS AND DEFINITIONS......Page 640
PROBLEMS......Page 643
Appendix A Physiological Parameters......Page 645
Appendix B Chemical Parameters......Page 651
Appendix C Units and Conversion Factors......Page 654
Index......Page 657