This book is essential reading for those interested in understanding current trends of research in the area of biomechanics at micro- and nanoscale levels. It details the research carried out to date in this field by fourteen prominent researchers as part of a four-year government supported project which commenced in 2003. It consists of four chapters entitled Cell Mechanics, Cell Response to Mechanical Stimulation, Tissue Engineering and Computational Biomechanics.
Author(s): Hiroshi Wada
Publisher: World Scientific
Year: 2005
Language: English
Pages: 182
City: Singapore; Hackensack, NJ
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанобиотехнология;
CONTENTS......Page 9
PREFACE......Page 6
FOREWORD......Page 7
I. CELL MECHANICS......Page 12
1 Introduction......Page 14
2.2 Whole-cell voltage-clamp recording......Page 15
2.4 Nonlinear capacitance measurements......Page 16
3.1 Extracellular application of streptomycin and gentamicin......Page 17
3.2 Intracellular application of streptomycin......Page 19
4 Discussion......Page 20
References......Page 21
Mechanotransduction in bone cell networks X. E. Guo, E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung and K. D. Costa......Page 24
1 Introduction......Page 25
2.1 Microcontact printing for the formation of controlled bone cell networks......Page 26
2.2 Optimization of geometric parameters for bone cell network formation......Page 27
2.3 Assessment of gap junction formation......Page 28
2.4 Single-cell nanoindentation using atomic force microscopy......Page 29
3.1 Assessment of cell patterning......Page 31
3.2 Calcium wave propagation in bone cell networks......Page 34
4 Discussion......Page 37
5 Conclusions......Page 42
References......Page 43
1 Introduction......Page 47
2.1 Primary cell isolation and culture......Page 48
2.3 Displacement measurement and strain calculations......Page 49
2.4 Intracellular strain calculations following stretch......Page 50
3.1 Cell stretching experiments......Page 51
4 Discussion......Page 54
References......Page 56
II. CELL RESPONSE TO MECHANICAL STIMULATION......Page 60
1 Introduction......Page 62
2.1 Conceptual scheme of tethering process......Page 64
2.2 Enhancing tethering by mean sliding velocity......Page 65
2.3 Enhancing tethering by Brownian motion......Page 66
2.4 Enhancing tethering by molecular diffusion......Page 67
3.1 Conceptual scheme of rolling process......Page 69
3.2 Rolling velocity scales with tether force......Page 70
3.3 Off-rate curves and rolling velocity curves correlate and scale similarly......Page 71
3.4 Off-rate curves and curves of multiple rolling regularity metrics correlate and scale similarly......Page 72
4 Discussion and Conclusion......Page 74
References......Page 75
1 Introduction......Page 77
2 Structures of Selectins and Selectin-Ligand Complexes......Page 78
3.1 Free dynamics simulations of selectin lectin-EGF domains......Page 80
3.2 SMD simulations of unbinding of selectin-ligand complexes......Page 81
4 Sliding-Rebinding Mechanism and Pseudoatom Representation......Page 83
5 Testing the Sliding-Rebinding Mechanism by Mutagenesis Studies......Page 87
6 Discussion and Conclusion......Page 88
References......Page 89
Role of external mechanical forces in cell signal transduction S. R. K. Vedula, C. T. Lim, T. S. Lim, G. Rajagopal, W. Hunziker, B. Lane and M. Sokabe......Page 91
1.1 Mechanotransduction process......Page 92
2.1.1 Models for the functioning of MS channels......Page 94
2.2 Integrins......Page 96
2.3 Intercellular adhesion molecules......Page 97
2.4 Cytoskeleton......Page 98
3.1 Mechanosensitive (MS) ion channels......Page 99
3.1.2 Mechanosensitive (MS) ATP Release......Page 100
3.2.2 Fyn/Shc pathway......Page 102
3.2.4 Tyrosine phosphatases......Page 103
References......Page 105
III. TISSUE ENGINEERING......Page 116
1 Introduction......Page 118
2.1 Isolation of chondrocytes and preparation of chondrocyte/agarose constructs......Page 119
2.3 FCD measurements by Gd-DTPA2- enhanced MRI......Page 120
3 Results......Page 122
4 Discussion......Page 124
References......Page 127
1 Introduction......Page 129
2 Hybrid Porous Scaffolds......Page 130
4 Cartilage Tissue Engineering Using Hybrid Scaffolds......Page 133
5 Osteochondral Tissue Engineering Using Hybrid and Biphasic Scaffolds......Page 136
6 Conclusions......Page 138
References......Page 139
IV. COMPUTATIONAL BIOMECHANICS......Page 142
1 Introduction......Page 144
2.1 Measurement of the aortic geometry and flow using MRI......Page 145
2.3 Left ventricle model......Page 146
2.5 Simulation condition and procedure......Page 147
3.1.1 Flow simulation with an integrated model of the left ventricular and the aorta......Page 148
3.2 Hemodynamics in the aorta models with/without tapering and branches......Page 150
4.2 Significance of the branches and tapering of the aorta......Page 153
Acknowledgments......Page 154
References......Page 155
1 Introduction......Page 157
2.1 Numerical models......Page 159
2.3 Boundary conditions......Page 161
3.2 Velocity waveforms......Page 162
3.3 Pulse wave velocity......Page 163
3.4 PWV comparison between computation and theoretical values......Page 164
4 Discussion......Page 165
Acknowledgments......Page 166
References......Page 167
1 Introduction......Page 168
2.1 Initial geometry of the blood vessel......Page 169
2.3 Thickening of the vessel wall......Page 170
3 Results and Discussion......Page 171
4 Conclusions......Page 175
References......Page 176
SUBJECT INDEX......Page 178