This book is essential reading for those interested in understanding current trends of research in the area of biomechanics at micro- and nanoscale levels. It details the research carried out to date in this field by fourteen prominent researchers as part of a four-year government supported project which commenced in 2003. It consists of four chapters entitled Cell Mechanics, Cell Response to Mechanical Stimulation, Tissue Engineering and Computational Biomechanics.
Author(s): Hiroshi Wada
Publisher: World Scientific
Year: 2005
Language: English
Pages: 181
City: Singapore; Hackensack, NJ
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанобиотехнология;
CONTENTS......Page 8
PREFACE......Page 6
I. CELL MECHANICS......Page 10
1 Introduction......Page 12
2.1 Materials and methods......Page 13
2.2 Results and discussion......Page 14
3.1 Materials and methods......Page 16
3.2 Results and discussion......Page 17
4.1 Materials and methods......Page 18
4.2 Results and discussion......Page 19
References......Page 21
1 Introduction......Page 23
2.1 Materials and methods......Page 24
2.2 Results and discussion......Page 25
3.1 Micro tensile tester for stress relaxation test......Page 27
3.2 Materials and methods......Page 28
3.3 Analysis......Page 29
3.4 Results and discussion......Page 30
4 Conclusions......Page 32
References......Page 33
1 Introduction......Page 34
2.4 In vitro network formation model......Page 35
3.1 Mechanical properties of collagen gels depend on the pH of the collagen polymerization solution......Page 36
3.2 Collagen gel elasticity affects the process of network formation by BPMECs......Page 37
3.3 Collagen gel elasticity affects the structure of 3D networks formed by BPMECs......Page 38
4 Discussion......Page 41
References......Page 43
1 Introduction......Page 45
2.1 Visualization of chondrocytes and compression tests of articular cartilage in confocal laser scanning microscope......Page 46
2.2 Finite element analyses for biphasic articular cartilage......Page 47
3.1 Visualization of chondrocytes and compression tests of articular
cartilage in confocal laser scanning microscope......Page 48
3.2 Finite element analyses for biphasic articular cartilage......Page 51
4 Discussion......Page 53
5 Conclusions......Page 54
References......Page 55
II. CELL RESPONSE TO MECHANICAL STIMULATION......Page 56
1 Introduction......Page 58
2.1 Materials and methods......Page 59
2.2 Results and discussion......Page 60
3.1 Materials and methods......Page 63
3.2 Results and discussion......Page 64
Acknowledgments......Page 67
References......Page 68
1 Introduction......Page 69
2.1 Materials and methods......Page 70
2.2 Results and discussion......Page 71
3.1 Materials and methods......Page 73
3.2 Results and discussion......Page 74
References......Page 78
1 Introduction......Page 81
2.2 Preparation of semi-intact cells......Page 82
2.5 Dragging lamella......Page 83
3 Results......Page 84
4 Discussion......Page 86
References......Page 88
III. TISSUE ENGINEERING......Page 92
1 Introduction......Page 94
2.1 Cartilage harvest and cell culture......Page 95
2.3 Application of hydrostatic pressure to seeded chondrocytes......Page 96
2.5 Analysis of messenger RNA (mRNA) levels......Page 97
3 Results......Page 98
4 Discussion......Page 100
References......Page 102
1 Introduction......Page 105
2.2.1 Preparation of a hybrid vascular graft......Page 106
2.2.2 Perfusion culture of the cells of a hybrid graft......Page 107
3.1 Gross observation of harvested grafts......Page 108
3.2 Effects of a shear flow and water filtration on the thickness of the cell layer......Page 109
3.3 Effects of a shear flow and water filtration on the number of cells......Page 111
4 Discussion......Page 112
Acknowledgments......Page 113
References......Page 114
1 Introduction......Page 116
2.1 Materials and methods......Page 117
2.2 Results and discussion......Page 118
3.1 Materials and methods......Page 119
3.2 Results and discussion......Page 120
4.1 Materials and methods......Page 121
5.1 Materials and methods......Page 122
5.2 Results and discussion......Page 123
6 Conclusions......Page 124
References......Page 125
IV. COMPUTATIONAL BIOMECHANICS......Page 126
1 Introduction......Page 128
2.1 Trabecular hardness, mineral content, and their orientation-dependency......Page 129
2.2 Local trabecular resorption and formation: Synchrotron radiation µCT study......Page 130
3.1 Microstructure of porous canal network in cortical bone......Page 132
3.2 Transport in cortical bone through porous network: A model study......Page 133
3.3 Local material and mechanical properties in cortical bone......Page 134
4 Periosteal Microcirculation: Study of the Effect of Mechanical Unloading......Page 135
5 Conclusions......Page 136
References......Page 137
1 Introduction......Page 139
2.1 Methods......Page 140
2.2 Results and discussion......Page 141
3.1 Methods......Page 142
3.2 Results and discussion......Page 144
4.1 Methods......Page 145
4.2 Results and discussion......Page 146
5 Conclusions......Page 147
References......Page 148
1 Introduction......Page 150
2.1 Muscle injury test system and procedure......Page 151
2.2 Results of muscle injury tests......Page 152
3 Mechanical Properties of Microstructure of Skeletal Muscle......Page 153
3.2 Results of micro mechanical tests of muscle fascicle......Page 154
4.1 Free energy function and hypothesis of total energy equivalence......Page 155
4.2 Damage evolution......Page 158
5 Conclusions......Page 159
References......Page 160
1 Introduction......Page 161
2.1 Reorientation of actin stress fibers in response to cyclic stretching......Page 162
2.2 Finite-element modeling of an adherent endothelial cell......Page 163
3.1 Freezing-induced changes in the stress-strain relationship of vascular tissue......Page 164
3.2 Mathematical description of the stress-strain relationship of the vascular tissue......Page 165
3.3.2 Results and discussion (Fig. 6)......Page 166
4.2 Results and discussion......Page 167
5 Conclusions......Page 169
References......Page 170
SUBJECT INDEX......Page 174