Biological Fuel Cells: Fundamental to Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Biological Fuel Cells: Fundamental to Applications offers a comprehensive update on the latest microbial fuel cells technologies and their systems development and implementation. Taking a practical approach to MFCs, the book provides guidance on analytical methods and tools, economic and performance analyses of various technologies and systems, and engineering aspects. Established and newly developed technologies are presented alongside their applications within the context of cost, practicality and future technologies, which are discussed within the context of other renewable energy systems. This book is a comprehensive reference for users working in the field of fuel cells, microbial fuel cells and bioenergy.

Author(s): Mostafa Rahimnejad
Publisher: Elsevier
Year: 2023

Language: English
Pages: 507
City: Amsterdam

Front Cover
Biological Fuel Cells: Fundamental to Applications
Copyright
Contents
Contributors
Part 1: Constituents, structure, materials and measurement with conceptual, practical and economical views
Chapter 1: Introduction to biological fuel cell technology
1.1. Background
1.2. Basic principles
1.2.1. Microbial decomposition of organic materials
1.2.2. Working principles of MFCs
1.3. Potential feedstocks for MFCs
1.3.1. Pure organics
1.3.2. Solid wastes
1.3.3. Organic materials
1.4. BFC's classification
1.4.1. MFCs
1.4.1.1. Photosynthetic MFCs
Plant MFCs
Algal MFCs
1.4.1.2. Microbial desalination cells (MDCs)
1.4.1.3. Sediment microbial fuel cells (SMFCs)
1.4.2. Enzyme-based fuel cells (EFCs)
1.5. Conclusions
References
Chapter 2: Microbiological concepts of MFCs
2.1. Introduction
2.2. Exoelectrogenic microorganisms
2.2.1. Pioneering microbial communities
2.2.1.1. Bacterial involvement in MFCs
Proteobacteria
Phototrophic bacteria
2.2.1.2. Exoelectrogenic eukaryotes
2.2.1.3. Mixed culture in MFCs
2.2.2. Sources of exoelectrogens
2.2.2.1. Natural sources
2.2.2.2. Artificial sources
2.2.3. Strategies for studying exoelectrogens
2.2.3.1. Microbiological methods
2.2.3.2. Molecular methods
2.2.3.3. Electrochemical methods
2.3. Electrotrophic microorganisms
2.4. Electron transport mechanisms
2.4.1. Mechanisms for delivering electrons to an anode
2.4.2. Mechanisms for electron uptake from cathodes
2.4.3. Interspecies electron transfer through conductive minerals
2.5. Factors affecting the electron transfer mechanism
2.5.1. Biofilm integrity
2.5.2. Structure and composition of electrodes
2.5.3. Electrolyte and electron mediators
2.6. Mechanism of biofilm formation in MFCs
2.7. Factors affecting biofilm formation and performance
2.7.1. System configuration
2.7.2. Operating parameters
2.7.3. Biological parameters
2.8. Genetic approaches for improving the performance of MFCs
2.9. Conclusions
References
Chapter 3: Anode electrodes in MFCs
3.1. Introduction
3.2. Necessities of anode materials
3.2.1. Surface area and porosity
3.2.2. Fouling and poisoning
3.2.3. Electronic conductivity
3.2.4. Biocompatibility
3.2.5. Stability and long durability
3.2.6. Electrode cost and availability
3.3. Anolytes
3.4. Anode-assisted electrochemical catalysis
3.5. Anode materials
3.5.1. Carbonaceous electrodes
3.5.2. Metal nanoparticles
3.5.3. Conducting polymers
3.6. Surface modification of MFC anode materials
3.6.1. Alkaline/acidic surface oxidation
3.6.2. Heat treatment
3.6.3. Surface coating with electroactive materials
3.7. Conclusions
References
Chapter 4: Cathode electrodes in MFCs
4.1. Introduction
4.2. Cathode concepts
4.3. Cathodic structures in MFC
4.3.1. Plane cathodes
4.3.2. Packed cathodes
4.3.3. Tubular cathodes
4.3.4. Brush cathodes
4.3.5. Rotating disk electrodes (RDE)
4.4. Cathode requirements in MFCs
4.4.1. Biocompatibility and surface roughness
4.4.2. Surface area and porosity
4.4.3. Conductivity
4.4.4. Hydrophobicity/hydrophilicity
4.4.5. Stability and durability
4.4.6. Cost and availability
4.5. Cathodic surface treatment
4.6. Catholytes
4.7. Enzyme immobilization methods for biocathodes
4.7.1. Physical adsorption
4.7.2. Entrapment or copolymerization
4.7.3. Affinity
4.7.4. Covalent binding
4.8. Cathode catalysts: Conventional, photo, and biocatalysts
4.8.1. Cathodic photocatalysts
4.8.2. Biocatalysts
4.8.2.1. Biology
4.8.2.2. Advantages of biocathode
4.8.2.3. Disadvantages of biocathodes
4.8.3. Conventional catalysts
4.8.3.1. Pt and Pt-based ORR catalysts
4.8.3.2. PMG-free catalyst
4.9. Conclusions
References
Chapter 5: Energy and power measurement methods in MFCs
5.1. Introduction
5.2. Power indicators
5.2.1. Coulombic efficiency
5.2.2. Open circuit voltage (OCV)
5.2.3. Current density
5.2.4. Power density
5.3. Electrochemical methods
5.3.1. Polarization study
5.3.2. Current interruption
5.3.3. Voltammetry techniques
5.3.3.1. Linear sweep voltammetry technique
5.3.3.2. Cyclic voltammetry technique
5.3.3.3. Differential pulse voltammetry
5.3.3.4. Chronoamperometry technique
5.3.4. Butler-Volmer analysis and Tafel Plots
5.3.5. Electrochemical impedance spectroscopy (EIS) analysis
5.4. Biofilm characterization methods
5.4.1. Detection of biofilm forming microorganisms
5.4.2. Characterization of microbial communities
5.4.3. Analysis of biofilm activity
5.5. Conclusions
References
Chapter 6: MFC designing and performance
6.1. Introduction
6.2. MFC configurations
6.2.1. Dual-chambered MFCs
6.2.1.1. H-shaped DC-MFCs
6.2.1.2. Cuboid-shaped DC-MFCs
6.2.1.3. Double-chamber up-flow MFCs
6.2.1.4. Dual-chambered upflow U-shaped MFCs
6.2.1.5. Dual-chambered concentric tubular MFCs
6.2.1.6. Decoupled MFCs
6.2.2. Single-chamber MFCs
6.2.2.1. Up-flow single-chamber MFCs
6.2.2.2. Single-chambered concentric tubular MFCs
6.2.3. Multichambered MFCs
6.2.4. Other innovative MFC configurations
6.2.5. MFC hybrid systems
6.3. Different modes of operation in MFCs
6.4. Kinetic analysis and modeling of MFCs
6.4.1. Bioanode kinetics
6.4.2. Cathode kinetics
6.4.3. Membrane/separator kinetics
6.5. MFCs at a larger laboratory scale
6.6. Pilot-scale MFC designs
6.7. Conclusions
References
Chapter 7: Separators and membranes
7.1. Introduction
7.2. Membrane types for MFCs
7.2.1. Ion-exchange membranes
7.2.1.1. Cationexchange membranes
7.2.1.2. Anion-exchange membranes
7.2.1.3. Bipolar membranes
7.2.1.4. Capacity of ion-exchange membranes
7.2.2. Porous membranes
7.2.2.1. Ultrafiltration membranes
7.2.2.2. Microfiltration membranes
7.2.3. Ceramic membranes
7.2.3.1. Cation exchange mechanism in clay-based separators
7.2.3.2. Modification of clay-based separators
7.2.4. Polymer electrolyte membranes (PEMs)
7.2.4.1. PEM functions in MFCs
7.2.4.2. PEM materials
Synthetic polymer-based membranes
Natural polymer-based membranes
7.2.5. Salt bridge
7.3. Membrane requirements in MFCs
7.3.1. Water uptake
7.3.2. Proton conductivity
7.3.3. Ion exchange capacity
7.3.4. pH splitting
7.3.5. Membrane permeability
7.3.6. Membrane biofouling
7.3.7. Membrane resistance
7.4. Conclusions
References
Chapter 8: Supercapacitive microbial fuel cells
8.1. Introduction
8.2. High surface area capacitive electrodes in MFCs
8.3. Supercapacitive microbial fuel cells
8.4. Pseudocapacitive MFC electrodes
8.5. Conclusions
References
Chapter 9: MFCs challenges and their potential solutions
9.1. Introduction
9.2. Voltage losses
9.3. How can biofilm formation cause voltage losses?
9.4. Biofouling formation principles
9.5. Biofouling development on membrane and cathode surfaces
9.6. Biofouling assessment methods
9.7. Driving factors of biofouling
9.7.1. Membrane biofouling
9.7.2. Cathode biofouling
9.8. How to overcome fouling challenges
9.8.1. Membrane adaptation
9.8.2. Cathode adaptation
9.9. Conclusions
References
Chapter 10: MFCs commercialization and economic analysis
10.1. Introduction
10.2. Field trials of MFCs
10.3. Cost-effective MFC resources
10.3.1. Domestic wastewater
10.3.2. Brewery and winery wastewater
10.3.3. Wastewater generated from food-processing industries
10.4. Commercialization requirements
10.4.1. Power generation capacity
10.4.2. Energy conversion efficiency
10.4.3. Operational stability
10.4.4. Power output improvement
10.5. Large-scale implementation
10.5.1. Financial incentives
10.5.2. Manufacturing cost and reduction strategies
10.6. Conclusions
References
Part 2: MFCs applications
Chapter 11: Electricity generation
11.1. Introduction
11.2. Bioelectricity generation in MFC systems
11.2.1. Solar-enhanced MFCs
11.2.1.1. Solar cell-induced MFCs
11.2.1.2. Photoelectrochemical cell- MFC hybrid devices
11.2.1.3. Photosynthetic MFCs
11.2.2. Microbial desalination cells (MDCs)
11.2.3. Soil MFCs
11.3. Power generation in EFC systems
11.4. Practical implementation of MFC technology for power generation
11.4.1. Power applications
11.4.1.1. MFCs as direct power sources
11.4.1.2. MFC systems integrated with energy harvesting modules
11.4.2. Sensing technology
11.4.3. Field trials
11.5. Conclusions
References
Chapter 12: Application of biological fuel cell in wastewater treatment
12.1. MFCs vs other available options
12.2. Principles of wastewater treatment via MFCs
12.3. Preference of MFCs vs other WWTP
12.4. Expansion of microbial fuel cell research in wastewater treatment
12.5. Mechanisms and reactions of MFC
12.6. Microbial communities for bioanode
12.7. Application of microbial fuel cells in various wastewater treatments
12.7.1. Performance of agricultural and food wastewater-based MFCs
12.7.2. Brewery wastewater
12.7.3. Dairy waste industry
12.7.4. Palm oil mill effluent
12.7.4.1. Textile wastewater
12.7.5. Pharmaceutical
12.8. MFC Integration with other processes in wastewater treatment plants
12.9. Integration of MFC with electro-Fenton technology (BEF)
12.10. Future perspective
12.11. Conclusions
References
Chapter 13: Biohydrogen generation and MECs
13.1. Introduction
13.2. MEC fundamentals
13.3. Theoretical yields of MEC systems
13.4. MEC Challenges and promising solutions
13.4.1. Self-sustainability of MECs
13.4.2. Methanogenesis
13.4.3. Economic issues
13.5. MEC operation
13.5.1. MEC architecture
13.5.1.1. Two-chamber MECs
13.5.1.2. Single-chambered MECs
13.5.1.3. Continuous flow MECs
13.5.1.4. MEC integration with other carbon-neutral technologies
13.5.2. MEC electrode design
13.5.3. Operating conditions
13.6. MEC Performance
13.7. Conclusions
References
Chapter 14: CO2 reduction and MES
14.1. Introduction
14.2. Basic principles of MECs utilized for CO2 capture
14.3. MES microbial community
14.4. MES products
14.4.1. C1 biochemicals
14.4.2. C2 biochemicals
14.4.3. C3 biochemicals
14.4.4. C4 biochemicals
14.5. Requirements for MES operation
14.6. MES scale-up
14.7. Conclusions
References
Chapter 15: Bioremediation by MFC technology
15.1. Types of microbial fuel cells for bioremediation of pollutants
15.1.1. Anaerobic microbial fuel cells (ANMFCs)
15.1.2. Sediment microbial fuel cells
15.1.3. Benthic microbial fuel cells (BMFC)
15.1.4. Enzyme-based microbial fuel cells (EBC)
15.1.5. Air-breathing cathode-based microbial fuel cells (ABC-MFC)
15.1.6. Constructed wetland-microbial fuel cells (CW-MFC)
15.1.7. Thermophilic microbial fuel cells (TMFC)
15.1.8. Algae MFCs
15.2. Applications of MFC for sludge remediation
15.3. Bioremediation of chromium released from industrial wastewater using MFC
15.4. Bioremediation of landfill leachates and municipal wastewater via MFC
15.5. MFC-assisted biodegradation of azo dyes
15.6. Bioremediation of hydrocarbons and their derivatives
15.7. Removal of heavy metals
15.7.1. Concept and principle
15.7.2. Electrode materials used for heavy metal removal in bio-electrochemical systems
15.7.2.1. BES for metal recovery with abiotic cathode
15.7.2.2. Metal recovery with bio electrodes
15.7.3. Conventional technologies vs bioelectrochemical systems-based technology
15.7.4. Bioelectrochemical metal removal and recovery
15.7.4.1. Arsenic
15.7.4.2. Cadmium (Cd)
15.7.4.3. Chromium (Cr)
15.7.4.4. Cobalt (Co)
15.7.4.5. Copper (Cu)
15.7.4.6. Mercury (Hg)
15.7.4.7. Gold (Au)
15.7.4.8. Nickel (Ni)
15.7.4.9. Selenium (Se)
15.7.4.10. Silver (Ag)
15.7.4.11. Vanadium (V)
15.8. Mechanism and thermodynamic of metal bioelectrodeposition
15.9. Removal of other pollutants
References
Chapter 16: MFC-based biosensors
16.1. Measurement and sensors
16.2. Types of sensors
16.3. Recognition element
16.4. Transducer
16.5. Classification of chemical sensors
16.6. Biosensors and their classification
16.6.1. Enzyme-based biosensors
16.6.2. Antibody/antigen-based biosensors (Immunosensors)
16.6.3. Nucleic acid-based biosensors
16.6.4. Microbial biosensors
16.7. Biosensors applications
16.8. Self-powered biosensors
16.9. MFC-based biosensors
16.9.1. The operation mechanism of MFCs as biosensors
16.9.2. Applications of MFC-based biosensors
16.9.2.1. BOD monitoring
16.9.2.2. Toxicants monitoring
16.9.2.3. Food and fermentation monitoring
16.9.2.4. Clinical diagnostics
16.9.2.5. Microbial activity (MA) monitoring
16.10. Conclusions
References
Chapter 17: Sediment microbial fuel cell (SMFCs)
17.1. SMFCs and constructed wetland (CW) associated with it
17.1.1. Fundamentals of SMFCs and CW-MFCs
17.1.2. Factors affecting the performance of SMFCs and CW-MFCs
17.1.2.1. Electrode materials
17.1.2.2. Electrode spacing and external resistance
17.1.2.3. Effect of catalysts and mediators
17.1.2.4. Effect of pH, dissolved oxygen, and temperature
17.1.2.5. Plants
17.1.2.6. Operating conditions
17.1.2.7. Effect of electrode surface
17.1.3. Electricity generation as a function of wastewater treatment
17.2. Photosynthetic sediment microbial fuel cells (PSMFCs)
17.3. SMFCs and removal of heavy metals
References
Chapter 18: Future applications of biological fuel cells
18.1. Introduction
18.2. Robotics
18.2.1. Terrestrial and underwater applications
18.2.2. Modeling and outer space applications
18.3. Powering low-energy devices
18.4. MFCs powering remote sensors
18.5. Paper-based MFC devices
18.6. Urine-based MFC
18.7. Concluding remarks
References
Index
Back Cover