IR spectroscopy has become without any doubt a key technique to answer questions raised when studying the interaction of proteins or peptides with solid surfaces for a fundamental point of view as well as for technological applications. Principle, experimental set ups, parameters and interpretation rules of several advanced IR-based techniques; application to biointerface characterisation through the presentation of recent examples, will be given in this book. It will describe how to characterise amino acids, protein or bacterial strain interactions with metal and oxide surfaces, by using infrared spectroscopy, in vacuum, in the air or in an aqueous medium. Results will highlight the performances and perspectives of the technique. Description of the principles, expermental setups and parameter interpretation, and the theory for several advanced IR-based techniques for interface characterisationContains examples which demonstrate the capacity, potential and limits of the IR techniquesHelps finding the most adequate mode of analysisContains examplesContains a glossary by techniques and by keywords
Author(s): C. M. Pradier, Y J Chabal
Edition: 1
Publisher: Elsevier
Year: 2011
Language: English
Pages: 333
Tags: Биологические дисциплины;
1......Page 1
2......Page 4
3......Page 5
4......Page 9
IR spectroscopy for biorecognition and molecular sensing......Page 11
How Does It Work – The Physical Basis Of Rairs......Page 12
CO on pure metal surfaces: the beginning......Page 18
CO/Pd(110)......Page 19
Lysine and tartaric acid on Cu(110) single crystal surface; glutamic acid on Ag(110)......Page 21
Low-coverage phase......Page 22
High-coverage phase......Page 23
Room-temperature (300 K) adsorption phase......Page 25
High-temperature (400 K) adsorption phase......Page 27
Glutamic acid on Ag(110)......Page 28
Adsorption of tri-alanine on Cu(110)......Page 29
Gly-Pro on Au(110)......Page 31
IGF on Au(110)......Page 32
Gly-Pro, IGF, and GSH growth mode comparison......Page 33
Conclusions......Page 34
References......Page 35
Introduction......Page 37
Infrared spectroscopy for characterization of biomolecular interfaces......Page 66
PM-IRRAS signal......Page 38
Optimum angle of incidence......Page 39
APS layer formation is highly uncontrolled and unstable in aqueous media......Page 41
BookmarkTitle:......Page 0
AFM-IR formalisation......Page 259
Experimental setup......Page 43
Lipids......Page 45
IR spectroscopy of metal carbonyls......Page 196
Bi and multilayers at the air–water interface......Page 47
Antibacterial LK peptides......Page 48
Gramicidin......Page 53
Membraneous proteins......Page 55
PS II core complex and rhodopsin......Page 332
Molecular antibiotic......Page 58
DNA interactions with the BGTC/DOPE (3/2) monolayer (20 mN/m) at the air/water interface......Page 59
Formation of an asymmetric lipid bilayer stabilized by DNA by compression beyond the collapse......Page 61
Conclusions......Page 63
References......Page 64
GENERAL CONSIDERATIONS FOR SEMICONDUCTOR SURFACES......Page 68
Absorption versus dispersion......Page 75
Biological molecules at surfaces: nonspecific binding of fibrinogen on H-terminated silicon surfaces......Page 77
Protein binding on a diamond thin film......Page 79
Photothermal effect......Page 256
Conformational analysis of proteins on surfaces by FTIR......Page 87
Acknowledgments......Page 89
Optical window......Page 233
Introduction......Page 92
Functionalization of silicon oxide surfaces......Page 97
Activation methods for optimal results......Page 99
APS layer formation is highly dependent on atmospheric conditions......Page 101
Functionalization of oxide-free silicon surfaces......Page 107
Biotinylation......Page 109
Behavior Of Biotinylated Surfaces In Different Environments......Page 111
PART II: TRANSITION METAL CARBONYL (TMC) PROBES......Page 115
Biotinylation and protein attachment to oxide-free silicon surfaces......Page 116
Conclusions......Page 119
Acknowledgments......Page 121
Carbonyl metallo immunoAssay (CMIA) [62]......Page 200
General Introduction......Page 123
Introduction and historical background......Page 124
FEWS principle......Page 228
Single beam sample reference (SBSR)......Page 129
Interaction of a lipopolysaccharide (LPS) with a lipid bilayer......Page 130
Orientation of N-acetyl-L-cysteine on gold......Page 132
Conclusions......Page 135
Lipid bilayers: symmetry properties......Page 136
Temperature modulation excitation of a hydrated poly-L-lysine film [25]......Page 138
Specific biomolecular recognition......Page 314
CONCLUSIONS......Page 145
In the transmission mode......Page 206
References......Page 283
Description of the method......Page 146
VCD of molecules adsorbed on metal nanoparticles......Page 147
References......Page 150
Introduction......Page 153
Synchrotron Infrared Emission......Page 155
AFM-IR setup description......Page 254
From constant field of bending magnet......Page 157
Edge radiation from extremities of bending magnets......Page 158
Fiber sensor design......Page 229
Identification of low frequency modes of adsorbed species......Page 163
Vibrational dynamics......Page 164
Single cells and tissues studies......Page 165
Spatially resolved biomolecular interface study......Page 167
Perspectives In Synchrotron Infrared For Biointerfaces......Page 170
References......Page 172
cha7......Page 175
The ATR technique......Page 176
The SEIRAS technique......Page 184
IRRAS to monitor surface functionalization and biointerfaces......Page 187
PM-IRRAS to monitor the elaboration of biosensors and biorecognition events......Page 189
PM-IRRAS to monitor DNA hybridization......Page 192
Conclusion......Page 195
Steroid hormonal receptor assay......Page 197
Mid-IR imaging......Page 205
In the specular reflection mode (IRRAS)......Page 208
In the diffuse reflectance mode (DRIFTS)......Page 211
Molecular sensing by IR spectroscopy......Page 212
In homogeneous media (transmission mode)......Page 213
At the solid–liquid interface (ATR)......Page 215
Cyano probes......Page 216
Azido probes......Page 219
Conclusion......Page 220
References......Page 221
Overview......Page 225
Development and historical background of FEWS......Page 227
Rheological properties......Page 232
Chemical stability......Page 234
Hydrophobic fiber surface for sensing in aqueous environments......Page 237
Monitoring of live cells......Page 239
Monitoring the dynamic of biofilms......Page 241
Statistical Spectral Analysis......Page 243
Biosensing through electrophoretic capture of charged molecules......Page 246
Acknowledgments......Page 248
References......Page 333
Introduction......Page 252
Concept And Technique Description......Page 253
Infrared absorption and spectroscopy......Page 255
Thermoelasticity......Page 258
Applications In Microbiology: Bacteria Studies......Page 265
Experimental demonstration on E. coli......Page 266
T5 bacteriophage detection inside E. coli......Page 270
PHB location into Rhodobacter capsulatus......Page 272
Mapping Eukaryotes Using Afm-Ir......Page 331
Localization of the endogenous structure by AFMIR......Page 277
Example of the localization of exogenous compounds......Page 278
Microspectroscopy using AFM-IR......Page 281
Introduction......Page 286
SFG basics......Page 290
Laser sources......Page 297
SFG photons production and detection......Page 301
Examples Of Applications To Biological Interfaces......Page 302
Lipid monolayers: sensitivity boosted......Page 303
Liquid–air and liquid–liquid interfaces: protein conformation......Page 307
Liquid–solid interfaces: protein interaction with surfaces......Page 308
Interfacial proteins in lipid bilayers: in situ behavior revealed......Page 310
Biosensing......Page 313
DNA conformation and pairing at surfaces......Page 316
Dynamics and kinetics: from fast to ultrafast time resolution......Page 318
Playing with colors and excited states: 2D-IR SFG, DR-SFG......Page 320
SFG microscopy: toward high-resolution imaging of biointerfaces......Page 323
References......Page 325
index......Page 329