Bioinformatics and Machine Learning for Cancer Biology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer. This book presents some of the latest progresses on leveraging bioinformatics and machine learning for cancer biology, which is particularly useful and attractive for cancer biologists, bioinformaticians, machine learning experts, computational biologists and other scientists or researchers in life sciences and biology.

Author(s): Shibiao Wan, Yiping Fan, Chunjie Jiang, Shengli Li
Publisher: MDPI
Year: 2022

Language: English
Pages: 197
City: Basel

Bioinformatics_and_Machine_Learning_for_Cancer_Biology.pdf
Book old-p208.pdf
Cover-front.pdf
Book.pdf
Table of contents-edit II.pdf
Book.pdf
Bioinformatics_and_Machine_Learning_for_Cancer_Biology
Book old-p208.pdf
Book old-p208.pdf
Cover-back.pdf