Bio-Inspired Land Remediation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Land is fundamental to the human life. The upper layer of land is a non-renewable resource, and source of food. Therefore, land health is essential to long-term food security and to promote sustainable livelihoods. On account of urbanization, industrialization and population growth, land pollution is one of the major issues worldwide. As a result, land pollution is continuing across the world, and has been linked with a wide range of potentially toxic contaminants at rates that deteriorate land quality. Land pollution can result either anthropogenic activities or natural activities. The major contaminants of land pollution are metalloids, petroleum hydrocarbon, radioactive elements, polyaromatic hydrocarbons (PAHs), Pesticide, other organic pollutants, etc. that comes from different types of sources. In urban and peri-urban areas, irrigation of agricultural land with polluted water is also a reason of land pollution. Therefore, land security is an important issue for future sustainability. Its remediation and management are important issue worldwide to protect land quality and functions. Land pollution means degradation of earth's surface. Polluted land comes under the category of degraded land. Hence, the remediation of polluted land is essential for regaining biodiversity and ecosystems services and thereby achieving United Nations-Sustainable Development Goals (UN-SDGs).This fact showed the need to develop research into land remediation. Bio-inspired land remediation has undergone a huge development. Therefore, Biomanagement has a lot of potential to secure upper earth’s surface through the land remediation programs targeted during the United Nations Decade on Ecosystem Restoration (2021-2030). This book explores the remediation of land pollution that includes Phytoremediation, Bioremediation (bacterial remediation and fungal remediation), Vermiremediation, Biochar-based remediation and other Bio-inspired remediation. This book will be a remarkable asset for research scholars, environmentalists, ecological scientist, agriculturist, practitioners, policy makers, entrepreneurs, and other stakeholders alike.

Author(s): Vimal Chandra Pandey
Series: Environmental Contamination Remediation and Management
Publisher: Springer
Year: 2023

Language: English
Pages: 492

Foreword
Preface
Acknowledgments
Contents
Editor and Contributors
About the Editor
Contributors
1 Bioenergy Crop-Based Ecological Restoration of Degraded Land
1.1 Introduction
1.2 Suitability of Bioenergy crops for Wide-Ranging Degraded Lands
1.3 Plant Derived Bioenergy Sources
1.4 Degraded Land Restoration by Energy Crops
1.5 Livelihood Improvements
1.6 Potential Challenges
1.7 Growing Bioenergy Crops on Degraded Lands: Achieving UN-SDGs
1.8 Conclusion
References
2 Understanding the Role of Ruderal Plant Species in Restoration of Degraded Lands
2.1 General Restoration Aspects of Degraded Lands
2.2 Ruderal Plants—General Traits and Significance
2.3 Annual Ruderal Plants
2.4 Ruderal Perennials
2.5 Woody Ruderals
2.6 Invasive Ruderal Plants
2.7 Conclusion Remarks
References
3 Utilizing Polluted Land for Growing Crops
3.1 Introduction
3.2 Edible Crop Production from Polluted Land and Bio-fortification
3.3 Plants that Produce a Pollutant Free Edible Part
3.4 Strategies for Reducing Pollutants in Edible Parts
3.5 Connecting Phytoremediation and Food Production
3.5.1 Benefits and Limitations
3.5.2 Utilizing Harvested Plant Material as a Resource
3.5.3 Policy Implementation
3.5.4 Viewpoint and Study Needs
3.6 Conclusions and Future Prospects
References
4 Plant Assisted Bioremediation of Heavy Metal Polluted Soils
4.1 Introduction: Background of Heavy Metal Pollution
4.1.1 World Status
4.1.2 Indian Status
4.2 Sources of Heavy Metal Pollution
4.3 Plant Assisted Bioremediation: Techniques/Strategies
4.4 Significance of Plant Assisted Bioremediation of Heavy Metal in Agriculture
4.5 Role of Microflora and Flora in Plant Assisted Bioremediation
4.5.1 Potential Microbes Involved in Bioremediation
4.5.2 Potential Plants Involved in Bioremediation
4.6 Mechanism of Plant Assisted Bioremediation
4.6.1 Bioavailability
4.6.2 Plant Uptake
4.6.3 Translocation
4.6.4 Sequestration/Detoxification
4.7 Conclusion and Future Prospects
References
5 Cutting-Edge Tools to Assess Microbial Diversity and Their Function in Land Remediation
5.1 Introduction
5.2 Culture-Dependent Techniques
5.2.1 Amplified Ribosomal DNA Restriction Analysis (ARDRA)
5.2.2 Ribosomal Intergenic Spacer Analysis (RISA)
5.2.3 Random Amplified Polymorphic DNA (RAPD)
5.3 Culture-Independent Techniques
5.3.1 Denaturing Gradient Gel Electrophoresis (DGGE)
5.3.2 Terminal Restriction Fragment Length Polymorphism (T-RFLP)
5.3.3 Fluorescence in situ Hybridization (FISH)
5.4 Cutting-Edge High-Throughput Culture-Independent Approach for Microbial Diversity
5.4.1 Metagenomics
5.5 Cutting-Edge High-Throughput Culture-Independent Approach for Microbial Function
5.5.1 Metatranscriptomics
5.5.2 Metaproteomics
5.5.3 Metabolomics
5.6 Conclusion, Challenges, and Future Perspective
References
6 Endophytic Microbes and Their Role in Land Remediation
6.1 Introduction
6.2 What Are Endophytic Microbes?
6.3 Effect of Endophytes in Soil Fertility Management
6.4 Nitrogen Fixation
6.5 Biofertilizer
6.6 Pathogen Antagonism
6.7 Siderophore Production
6.8 Nutrient Cycling
6.9 Plant–Endophytic Interaction and Their Role in Plant Growth Promotion
6.10 Plant–Endophytic Interactions
6.11 Plant Growth Promotion
6.12 Identification of Endophytes and Their Utilization Against Persistent Organic Pollutants
6.13 Effect of Endophytes Against Heavy Metal Contaminated Soil
6.14 Phytoavailability
6.15 Hyper Accumulation and Biosorption
6.16 Toxicity Reduction
6.17 Conclusion and Future Prospects
References
7 Fungal-Based Land Remediation
7.1 Introduction
7.2 Fungal Organisms and Bioremediation
7.3 Effectivity of Fungal Organism on Different Pollutants
7.3.1 Polycyclic Aromatic Hydrocarbons (PAH) and Polychlorinated Biphenyls (PCBs)
7.3.2 Potentially Toxic Metals and Metalloids
7.3.3 Agrochemical and Pharmaceutical Refuges
7.3.4 Detergents, Dyes and Phthalates
7.3.5 Petroleum
7.4 Mechanism of Action: Hypotheses and Evidence
7.4.1 Soil Systems
7.4.2 Water Bodies
7.4.3 Contaminated Products
7.5 Conclusion and Recommendations
References
8 Microbial Detoxification of Contaminated Land
8.1 Introduction
8.2 Environmental Impact of Pesticides
8.2.1 Atmospheric Contamination
8.2.2 Surface and Ground Water Contamination
8.2.3 Land Surface Contamination
8.3 Sources of POP and Their Current Status
8.3.1 Pesticide Toxicity and Its Degradation
8.4 Factors Responsible for Microbial Degradation
8.5 Microbial Enzymes Used in Pesticide Bioremediation
8.5.1 Oxidoreductase
8.5.2 Oxygenase
8.5.3 Cytochrome P450
8.5.4 Peroxidase
8.5.5 Laccases
8.5.6 Hydrolases
8.5.7 Haloalkane Dehalogenases
8.6 Impact of Genetic Engineering in Pesticide Degradation
8.7 Impact of Heavy Metal on Land Quality
8.7.1 Microorganisms Mediated Heavy Metal Bioremediation Approaches
8.7.2 Bioremediation of Toxic Metals Through Microbial Biomass and Their Enzymes
8.8 Future Prospects
References
9 Vermi-Remediation of Metal(loid)s Contaminated Surfaces
9.1 Introduction
9.2 Factors Governing the Process of Vermicomposting
9.3 Role of Earthworms in a Vermi-Reactor: Benefits and Limitations
9.4 Vermi-Remediation and Solid Waste Management
9.5 Vermicompost and Soil Health Management
9.5.1 Impact on Nutrient Cycling
9.5.2 Mechanism of Heavy Metal Detoxification: Role Metallothionein Isoforms in Vermi-Remediation
9.6 Detoxification of Soil Environment
9.7 Future Prospects
References
10 Fly Ash Management Through Vermiremediation
10.1 Introduction
10.2 Properties of FA
10.3 Verms as Bioreactor
10.4 Research Status on FA Use and Vermiremediation
10.4.1 FA Impact on Soil Characteristics
10.4.2 FA in Agriculture
10.5 What is Vermiremediation?
10.5.1 Advantages of Vermiremediation
10.5.2 Limitations of Vermiremediation
10.6 Biology of Earthworm and Its Functional Significance in Waste Degradation
10.7 Process of Vermiremediation
10.8 Strategies for Vermiremediation
10.9 Conclusions and Prospects
References
11 Management of Biomass Residues Using Vermicomposting Approach
11.1 Introduction
11.2 Vermicomposting
11.3 Agents of Vermicompost
11.3.1 Microorganisms
11.3.2 C/N Ratio
11.3.3 Heavy Metals
11.4 Types of Earthworms Employed for Vermicomposting in India
11.4.1 Care of Vermicomposting Earthworms
11.5 Vermicomposting on Ground Heaps
11.6 Raw Materials for Degradation by Vermicomposting Process
11.6.1 Agricultural biomass
11.7 Animal Waste Biomass
11.8 Forest Biomass
11.8.1 Vermicomposting of Mixed Leaves Waste
11.9 Human Habitation Waste
11.9.1 Vermicomposting of Industrial Sludge
11.9.2 Vermicomposting of Paper and Pulp Industry Sludge
11.9.3 Vermicomposting of Agro-Based/Sugar Industry Sludge
11.9.4 Vermicomposting of Sludge from Food Industry
11.9.5 Vermicomposting of Wastewater Sludge from Milk Processing Industry
11.9.6 Vermicomposting of Sludge from Tanning Industry
11.9.7 Vermicomposting of Sludge from Textile Industries
11.9.8 Vermicomposting of Distillery Industry Waste
11.9.9 Vermicomposting of Carbide Sludge
11.9.10 Vermicomposting of Contaminated Groundwater
11.10 Municipal Waste
11.10.1 Palm Oil Mill Waste
11.11 Vermicomposting of Human Excreta
11.12 Vermicomposting of Fly-Ash
11.13 Vermiremediation of Contaminated Soils
11.14 Properties of Vermicompost
11.14.1 The Physical Properties
11.14.2 Chemical and Biochemical Properties
11.14.3 Microbial Populations
11.14.4 Humus
11.15 Quality of Vermicompost
11.16 Advantages of Vermicompost
11.17 Conclusion
References
12 Vermiremediation of Agrochemicals, PAHs, and Crude Oil Polluted Land
12.1 Introduction
12.2 Agrochemicals: Classification, Effect on Environment, Health Hazards
12.3 PAHs (Classification, Effect on Environment, Health Hazards)
12.4 Crude Oil Polluted Land (Classification, Effect on Environment, Health Hazards)
12.5 Global Regulations on Use of Agrochemicals, PAHs, and Crude Oil
12.6 Strategies to Overcome the Harmful Effects of Agrochemicals, PAHs, Crude Oil
12.6.1 Chemical
12.6.2 Biological Method
12.6.3 Remediation by Chemical Methods
12.6.4 Remediation by Bioremediation
12.6.5 Remediation by Rhizoremediation
12.7 Vermicomposting in Bioremediation
12.7.1 Garden, Kitchen, and Agro Waste
12.7.2 Heavy Metal Reduction from Soil
12.7.3 Municipal Sewage Waste
12.7.4 Tannery Industry
12.7.5 Improving Forage Quality
12.8 Vermicompost: Mechanism
12.9 Conclusion
References
13 Biochar-Based Remediation of Heavy Metal Polluted Land
13.1 Introduction
13.2 Biochar and Its Production
13.2.1 Feedstock Variation
13.2.2 Thermal Treatment
13.3 Biochar Modification Methods
13.4 Properties of Biochar
13.4.1 Composition
13.4.2 pH and Ash Content
13.4.3 Cation exchange capacity
13.4.4 Surface Area, Porosity and Pore Volume
13.4.5 Mechanical Stability and Grindability
13.4.6 Energy Content and Thermal Conductivity
13.4.7 Interaction with Water
13.5 Heavy Metals and Their Removal
13.5.1 Heavy Metal Remediation Mechanisms
13.6 Impact of Biochar on Mobility of Heavy Metal
13.7 Impact of Biochar on Bioavailability of Heavy Metal
13.8 Remediation of Polluted Sites by Application of Biochar
13.9 Applications of Biochar Other Than Heavy Metal Removal
13.10 Advantages and Risks Associated with Biochar Production and Application
13.11 Future Research
13.12 Conclusion
References
14 Soil Carbon Sequestration Strategies: Application of Biochar an Option to Combat Global Warming
14.1 Introduction
14.2 Role of Carbon Dioxide (CO2) in Global Warming
14.2.1 Global Carbon Cycle (GCC)
14.3 Soil Organic Carbon (SOC)
14.4 SOC Sequestration Strategies
14.4.1 Cropland Soil Carbon Sequestration
14.4.2 Forest Soil Carbon Sequestration
14.4.3 Grasslands Soil Carbon Sequestration
14.4.4 Peatland (Wetlands) Soil Carbon Sequestration
14.4.5 Urban Soil Carbon Sequestration
14.5 Carbon Sequestration in Soil Through Biochar
14.6 Conclusions
References
15 Remediation of Pharmaceutical and Personal Care Products in Soil Using Biochar
15.1 Introduction
15.2 Sources and Transport of PPCPs to the Soil Environment
15.3 Environmental and Health Risk of PPCPs
15.4 Fate and Occurrence of PPCPs in the Soil Environment
15.4.1 Transformation
15.4.2 Bio-Adsorption and Accumulation
15.4.3 Translocation
15.4.4 Degradation
15.5 Strategies for Remediation of PPCPs from Soil
15.6 Biochar for PPCPs Removal from Soil
15.7 Factors Influencing the Removal of PPCPs Using Biochar
15.7.1 Biochar Properties
15.7.2 PPCPs Properties and Behaviour
15.7.3 Soil Properties
15.8 Mechanism of PPCPs Removal from Soil with Biochar
15.9 Possible Risk Factors Associated with Biochar Application for Removal of PPCPs from Soil
15.10 Conclusion and Future Approaches
References
16 Biochar for Improvement of Soil Properties
16.1 Introduction
16.2 Biochar Basics
16.3 Production of Biochar
16.4 Properties of Biochar
16.5 Impact of Biochar on Chemical Properties of Soil and Their Consequent Improvement
16.5.1 Effect of Biochar on Soil pH
16.5.2 Effect of Biochar on Soil Electrical Conductivity
16.5.3 Effect of Biochar on Soil Cation Exchange Capacity
16.5.4 Effect of Biochar on Soil Organic Matter and Soil Organic Carbon
16.5.5 Effect of Biochar on Soil Nutrients
16.6 Impact of Biochar on Physical Properties of Soil and Their Consequent Improvement
16.6.1 Effect of Biochar on Soil Water Holding Capacity
16.6.2 Effect of Biochar on Soil Porosity
16.6.3 Effect of Biochar on Soil Bulk Density
16.6.4 Effect of Biochar on Soil Aggregation
16.7 Impact of Biochar on Other Properties of Soil and Their Consequent Improvement
16.7.1 Effect of Biochar on Metals and Metalloids
16.7.2 Effect of Biochar on Soil Microbes
16.7.3 Effect of Biochar on Plants
16.8 Amendments and Modifications of Biochar for Enhancing the Impact on Soil Properties
16.9 Disadvantages of Biochar Application to Soil
16.10 Research Gaps
16.11 Conclusion
References
17 Biochar Production and Its Impact on Sustainable Agriculture
17.1 Introduction
17.2 History of Biochar Production and Use
17.2.1 Slash and Burn System Versus Slash and Char System
17.2.2 Biochar in Traditional Agriculture
17.3 Benefits of Biochar Use
17.4 Procedure for Synthesis of Biochar
17.4.1 Stages of Pyrolysis
17.4.2 Preprocessing of Feedstock
17.4.3 Post-processing of Biochar
17.4.4 Effect of Residential Time
17.5 Methods of Preparation
17.5.1 Heap Method
17.5.2 Cone-Pit Method
17.5.3 Drum Method
17.5.4 Brick Kilns
17.5.5 Biochar Stoves
17.6 Economic Feasibility of Biochar Production
17.7 Effects of Biochar on Agriculture
17.7.1 Geomechanical Properties
17.7.2 Nutrient Dynamics
17.7.3 Disease Pest Infestation
17.7.4 Weed Dynamics
17.7.5 Water Use Efficiency
17.7.6 Crop Growth and Yield
17.7.7 Climate Change
17.8 Future Prospects and Constraints in Biochar Systems
17.8.1 Scaling up from Pilot to Programme
17.8.2 Further Research Needs
17.8.3 Constraints and Risks
17.9 Conclusion
References
Index