Behavior and Design of High-Strength Constructional Steel

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Behavior and Design of High-Strength Constructional Steel presents readers with extensive information on the behavior of high-strength constructional steels, providing them with the confidence they need to use them in a safe and economic manner to design and construct steel structures. The book includes detailed discussions on the mechanical properties of HHS while explaining the latest progress in research and design guidelines, including material properties at ambient and elevated temperatures. In addition, the book explains the behavior of elementary members subject to different types of loads and load combinations, and those that are integral to the design of bolted and welded connections.

The hysteretic behavior of HHS materials and members are also discussed. This is critical for application and designs under earthquakes and fire conditions. The buckling behaviors of HSS box-section and H-section columns are included in terms of experimental and numerical investigations, along with the geometric imperfection induced by welding.

Author(s): Guo-Qiang Li, Yan-Bo Wang
Series: Woodhead Publishing Series in Civil and Structural Engineering
Publisher: Woodhead Publishing
Year: 2020

Language: English
Pages: 662
City: Duxford

Title-page_2021_Behavior-and-Design-of-High-Strength-Constructional-Steel
Behavior and Design of High-Strength Constructional Steel
Copyright_2021_Behavior-and-Design-of-High-Strength-Constructional-Steel
Copyright
Contents_2021_Behavior-and-Design-of-High-Strength-Constructional-Steel
Contents
List-of-Contributor_2021_Behavior-and-Design-of-High-Strength-Constructional
List of Contributors
Preface_2021_Behavior-and-Design-of-High-Strength-Constructional-Steel
Preface
1---Introduction_2021_Behavior-and-Design-of-High-Strength-Constructional-St
1 Introduction
1.1 Introduction
1.1.1 Advantages and limits of high-strength constructional steel
1.1.1.1 Cost-efficiency
1.1.1.2 Environmental friendly
1.1.1.3 Architectural and structural advantages
1.1.1.4 Limits
1.1.2 Current situation of steel production and consumption
1.1.3 Applications of high-strength constructional steel
1.1.3.1 Application in China
1.1.3.2 Applications outside of China
References
2---Material-properties-and-statistical-_2021_Behavior-and-Design-of-High-St
2 Material properties and statistical analysis of high-strength steels
2.1 Introduction
2.2 Mechanical properties of high-strength steels
2.3 Three-dimensional constitutive model of high-strength steels
2.3.1 Fundamental definition
2.3.2 Applicability of von Mises yield criterion for high-strength steel
2.3.2.1 Specimens
2.3.2.2 Smooth round bar tensile test
2.3.2.3 Notched round bar tensile test
2.3.2.4 Cylinder specimen compression test
2.3.2.5 Pure shear test
2.3.3 Effect of stress triaxiality and Lode angle
2.3.4 Proposed plasticity model of high-strength steel
2.3.5 Validation of the proposed plasticity model for HSS
2.3.5.1 Notched cylinder compression test
2.3.5.2 Flat grooved plate tensile test
2.4 Statistical analysis of Q690 high-strength steel
2.4.1 Data retrieval and statistics of material properties
2.4.2 Structural reliabilities using Q690 steel
2.4.2.1 Determination of structural reliability
2.4.2.2 Statistical analysis of structural resistance
2.4.2.3 Statistical analysis of load effect
2.4.3 Target reliability
2.4.4 Partial coefficients of resistance and design strength
2.5 Summary
References
3---Hysteretic-behavior-of-high-strengt_2021_Behavior-and-Design-of-High-Str
3 Hysteretic behavior of high strength steels under cyclic loading
3.1 Introduction
3.2 Cyclic behavior of high strength steels
3.2.1 Experimental program
3.2.1.1 Test materials
3.2.1.2 Cyclic test specimens
3.2.1.3 Loading protocols
3.2.2 Hysteretic behavior
3.2.2.1 Stress–strain hysteretic curve
3.2.2.2 Cyclic skeleton curves
3.2.2.3 Energy dissipation behavior
3.3 Hysteretic model and verification
3.3.1 Hysteretic model
3.3.1.1 Chaboche model
3.3.1.2 Giuffre–Menegotto–Pinto model
3.3.1.3 Dong–Shen model
3.3.2 Verification
3.4 Summary
References
4---Uniform-material-model-for-con_2021_Behavior-and-Design-of-High-Strength
4 Uniform material model for constructional steel
4.1 Introduction
4.2 Experimental observations
4.2.1 Data source
4.2.2 Cyclic hardening/softening behavior of the yielding surface and bounding surface
4.2.3 Kinematic hardening rule
4.2.4 Degradation of the elastic modulus
4.3 Theoretical modeling
4.3.1 Framework of constitutive modeling
4.3.2 Two-step hardening and three-step softening hardening/softening model
4.3.3 Kinematic hardening model
4.3.4 Elastic stiffness degradation
4.3.5 Tension–compression asymmetry
4.4 Capability of the constitutive model
4.4.1 Isotropic hardening/softening evolution surface
4.4.2 Kinematic hardening evolution surface
4.4.3 Cyclic behaviors described in the constitutive model of various steels
4.5 Simplification of cyclic hardening/softening constitutive model
4.6 Cyclic parameter calibration
4.6.1 Calibration method
4.6.2 Calibration of model parameters
4.6.3 Verification of calibration result
4.7 The evolution laws of constitutive model parameters
4.7.1 Evolution laws of monotonic parameters
4.7.2 Evolution laws of cyclic model parameters
4.8 Simplified evaluation approach for cyclic model parameter
4.9 Comparison of prediction results on different structural steels
4.10 Summary
References
5---Properties-of-high-strength-steels-a_2021_Behavior-and-Design-of-High-St
5 Properties of high-strength steels at and after elevated temperature
5.1 Introduction
5.2 Mechanical properties of high-strength steels at elevated temperatures
5.2.1 Methodology
5.2.2 Behaviors of high-strength steels at elevated temperature
5.2.2.1 Tests and specimens
5.2.2.2 Fracture modes of high-strength steel at elevated temperatures
5.2.2.3 Engineering stress–strain curves of high-strength steel at elevated temperatures
5.2.2.4 Definition of yield strength
5.2.2.5 Elastic modulus, yield strengths, ultimate strength, and ultimate strain of high-strength steel at elevated temperature
5.2.3 Temperature-dependent elastic modulus and yield strength of high-strength steels
5.2.4 Comparative study
5.3 Creep behavior of high-strength steels at elevated temperatures
5.3.1 Creep phenomenon and curves
5.3.2 Setup and specimens in creep test
5.3.3 Creep test procedure
5.3.4 Creep behavior of high-strength steels
5.3.4.1 Creep-time curves at various stress levels
5.3.4.2 Creep rate curves and demarcation point for three stages of high-strength steels
5.3.4.3 Comparison of creep strain of Q550, Q690, and Q890
5.3.5 Numerical creep models
5.3.5.1 Burger’s model
5.3.5.2 Norton’s model
5.3.5.3 Field & field model
5.3.5.4 Combined time hardening model in ANSYS
5.3.5.5 Three-stage creep model
5.4 Mechanical properties of high-strength steels after fire
5.4.1 Behavior of high-strength steel after fire
5.4.2 Mechanical properties of high-strength steels after fire
5.4.3 Mechanical properties of high-strength steel bolts after Fire
5.4.3.1 Specimens of high-strength bolts
5.4.3.2 Tests proceedure
5.4.3.3 Failure modes of high-strength bolts after fire
5.4.3.4 Engineering stress–strain relationship of high-strength bolts after fire
5.4.3.5 Reduction factors of high-strength bolts after fire
5.4.4 Summary
References
6---Behavior-and-design-of-high-strength_2021_Behavior-and-Design-of-High-St
6 Behavior and design of high-strength steel members under compression
6.1 Introduction
6.2 Material properties
6.3 Residual stresses in welded high-strength steel box sections and H-sections
6.3.1 Sectioning method
6.3.2 Assessment of residual stresses in welded Q460 steel sections
6.3.2.1 Specimens
6.3.2.2 Measured residual stress
6.3.3 Assessment of residual stresses in welded Q690 steel sections
6.3.3.1 Specimens
6.3.3.2 Measured residual stresses
6.3.4 Simplified residual stress model for welded Q460 steel sections
6.3.4.1 Box sections
6.3.4.2 H-sections
6.3.5 Simplified residual stress model for welded Q690 steel sections
6.3.5.1 Box sections
6.3.5.2 H-sections
6.4 Behavior of high-strength steel columns
6.4.1 Experiment program
6.4.1.1 Test specimen data and fabrication procedure
6.4.1.2 Test setup and test procedures
6.4.2 Overall buckling behavior of Q460 columns
6.4.2.1 Test results
6.4.2.2 Comparison of test results with design codes
6.4.3 Overall buckling behavior of Q690 columns
6.4.3.1 Test results
6.4.3.2 Test results
6.5 Parametric analysis and design recommendation
6.5.1 Parametric analysis of Q460 columns
6.5.1.1 Geometric imperfection sensitivity
6.5.1.2 Effect of residual stresses
6.5.2 Design of welded Q460 steel columns
6.5.2.1 Welded box-section columns
6.5.2.2 Welded H-section columns
6.5.3 Parametric analysis of Q690 columns
6.5.3.1 Effects of residual stresses
6.5.3.2 Effects of width-to-thickness of sections without residual stress
6.5.3.3 Response of various steel grades to initial deflections
6.5.4 Design of welded Q690 steel columns
6.5.4.1 Comparison with GB 50017-2003 code
6.5.4.2 Comparison with Eurocode 3
6.6 Summary
References
7---Behavior-and-design-of-high-strength_2021_Behavior-and-Design-of-High-St
7 Behavior and design of high-strength steel members under bending moment
7.1 Introduction
7.2 Experimental investigation
7.2.1 Material properties
7.2.2 Specimens
7.2.3 Initial geometric imperfections
7.2.4 Experimental setup and instrumentation
7.2.5 Failure mode and experimental procedures
7.2.6 Load–deflection curves
7.2.7 Load–strain curves
7.2.8 The investigation of effective length
7.2.9 Finite element modeling
7.2.9.1 Initial geometric imperfections and residual stresses
7.2.9.2 Boundary conditions and mesh
7.2.9.3 Material modeling
7.2.9.4 Verification of finite element model
7.3 Parametric study and analysis
7.3.1 Initial geometric imperfections and residual stresses
7.3.2 Effect of residual stress
7.3.3 Effect of width-to-thickness ratio and height-to-thickness ratio
7.4 Comparison with current design codes
7.4.1 Prediction of current codes
7.4.2 Comparison with current design codes
7.5 Summary
References
8---Behavior-and-design-of-high-strength-ste_2021_Behavior-and-Design-of-Hig
8 Behavior and design of high-strength steel columns under combined compression and bending
8.1 Introduction
8.2 Experimental investigation
8.2.1 H-sections
8.2.1.1 Test program
8.2.1.2 Specimen fabrication
8.2.1.3 Material properties
8.2.1.4 Test setup
8.2.1.5 Initial out-of-straightness
8.2.1.6 Test procedures
8.2.1.7 Test results
Failure modes and failure loads
Load–deformation relationships
Load–strain relationships
Initial loading eccentricity
8.2.1.8 Applicability of design rules
EN 1993-1-1
ANSI/AISC 360-16
GB 50017-2003
8.2.2 Box sections
8.2.2.1 Material properties
8.2.2.2 Specimen design and fabrication
8.2.2.3 Out-of-straightness and loading eccentricity
8.2.2.4 Test setup and loading procedure
8.2.2.5 Assessment of test result
Overall buckling behavior
Comparison of test results with design codes
8.3 Numerical investigation
8.3.1 H-sections
8.3.1.1 Residual stresses
8.3.1.2 Tensile to yield strength ratios
8.3.2 Box sections
8.3.2.1 Effect of slenderness
8.3.2.2 Effect of eccentricity ratio
8.3.2.3 Effect of width to thickness ratio
8.4 Design recommendation
8.4.1 H-sections
8.4.1.1 EN 1993-1-1
8.4.1.2 ANSI/AISC 360-16
8.4.1.3 GB 50017-2003
8.4.2 Box sections
8.5 Summary
References
9---Hysteretic-behavior-of-high-str_2021_Behavior-and-Design-of-High-Strengt
9 Hysteretic behavior of high-strength steel columns
9.1 Introduction
9.2 Experimental program
9.2.1 Specimens
9.2.2 Experimental setup
9.2.3 Measurement arrangement
9.2.4 Loading protocols
9.3 Experimental results
9.3.1 Experimental phenomenon
9.3.2 Hysteretic response
9.4 Numerical simulation
9.4.1 Material model and mesh
9.4.2 Geometric and boundary conditions
9.4.3 Initial imperfection
9.4.4 Verification of finite element model
9.5 Parametric analyses and discussions
9.5.1 Parameter design
9.5.2 Influence of width-to-thickness ratio of flange
9.5.3 Influence of web height–thickness ratio
9.5.4 Influence of axial force ratio
9.6 Hysteretic model
9.6.1 Hysteretic model incorporated with damage behavior
9.6.2 Simplified hysteretic model
9.7 Summary
References
10---Behavior-of-high-strength-steel-c_2021_Behavior-and-Design-of-High-Stre
10 Behavior of high-strength steel columns under and after fire
10.1 Introduction
10.2 Behavior of restrained high-strength steel columns under fire
10.2.1 Specimen preparation
10.2.2 Test set-up and measurements
10.2.3 Test procedure
10.2.4 Test results
10.2.4.1 Temperature evolution
10.2.4.2 Axial displacement and lateral deflection
10.2.4.3 Axial compressive force in the specimen
10.2.4.4 Failure mode
10.2.5 Comparison with restrained mild steel columns
10.3 Postfire residual capacity of high-strength steel columns with axial restraint
10.3.1 Test setup and specimens
10.3.2 Instrumentation
10.3.2.1 Strain gauges
10.3.2.2 Thermocouples
10.3.2.3 Displacement meters
10.3.3 Test procedure and results
10.3.3.1 Test procedure
10.3.3.2 Test results of fire behavior (heating and cooling)
10.3.3.3 Test results of postfire behavior (residual capacity)
10.3.4 Numerical simulation
10.3.4.1 Development of numerical models
10.3.4.2 Validation of numerical models
10.3.5 Parametric studies
10.3.5.1 Effect of maximum temperatures
10.3.5.2 Effect of load ratios
10.3.5.3 Effect of axial stiffness ratios
10.3.5.4 Effect of slenderness ratios
10.3.5.5 Effect of steel grades
10.3.6 Simplified formulation
10.4 Creep buckling experiments of high-strength steel columns at elevated temperatures
10.4.1 Specimen preparation
10.4.2 Test setup
10.4.3 Instrumentation
10.4.4 Test procedures
10.4.5 Experimental results
10.4.5.1 Furnace temperature
10.4.5.2 Column temperature and compression load
10.4.5.3 Lateral and axial displacement
10.4.5.4 Creep bucking time
10.4.5.5 Failure patterns and visual observation
10.5 Creep buckling prediction of high-strength steel columns at elevated temperatures
10.5.1 Numerical prediction of creep buckling test on Q690 high-strength steel column
10.5.1.1 Numerical model of Q690 high-strength steel column
10.5.1.2 Creep model of Q690 steels
10.5.1.3 Material properties of Q690 steel columns
10.5.1.4 General analysis steps
10.5.1.5 Validation against tests results
10.5.2 Numerical prediction of creep buckling test on ASTM A992 steel column
10.5.2.1 ASTM A992 steel column model in ABAQUS and experiment
10.5.2.2 Creep model of ASTM A992 steels
10.5.2.3 Material properties of ASTM A992 steel
10.5.2.4 General analysis steps
10.5.2.5 Validation against test results
10.5.3 Theoretical study on creep buckling behavior of steel columns
10.5.3.1 Theoretical formulation
10.5.3.2 Tangent modulus approach
10.5.3.3 Secant modulus approach
10.5.3.4 Validation of theoretical results against experimental results
10.5.3.5 Validation of theoretical results against numerical simulation
10.5.4 Parametric study for creep buckling behavior of high-strength steel columns
10.5.4.1 Effect of slenderness ratio
10.5.4.2 Effect of temperature levels
10.5.4.3 Effect of material strength
10.5.5 Creep buckling load factor for current codes of the practices
10.6 Summary
References
11---Bolted-connectio_2021_Behavior-and-Design-of-High-Strength-Construction
11 Bolted connections
11.1 Introduction
11.2 Bearing-type bolted connections for high-strength steels
11.2.1 Behavior of single-bolt connection
11.2.1.1 Experimental design
11.2.1.2 Test results
11.2.1.3 Discussions
11.2.2 Behavior of two-bolt connection in parallel
11.2.2.1 Experimental design
11.2.2.2 Test results
11.2.2.3 Optimization of e2 to p2 ratio
11.2.3 Behavior of multibolt connection in tandem
11.2.4 Comparison with current design codes
11.2.4.1 Brief introduction of current codes
11.2.4.2 Comparisons
11.3 Slip critical–type bolted connections for high-strength steels
11.3.1 Introduction
11.3.2 Experimental programs
11.3.2.1 Test specimens
11.3.2.2 Material properties
11.3.2.3 Preloading of bolt
11.3.2.4 Test setup
11.3.3 Experimental results
11.3.3.1 Long-term effect
11.3.4 Discussion
11.3.4.1 Vickers hardness-steel grade
11.3.4.2 Vickers hardness–roughness
11.3.4.3 Effect of plasticity deformation capacity on slip factor
11.3.5 Design recommendation
11.3.6 Summary
11.4 Experimental study on slip factor of hybrid connections
11.4.1 Introduction
11.4.2 Specimen of slip critical test
11.4.3 Experimental results
11.4.3.1 Load–slip curve
11.4.3.2 Slip factor
11.4.3.3 Analysis of test result
11.4.4 Discussion
11.4.4.1 Friction mechanism
11.4.4.2 Effect of furrow force
11.4.4.3 Hardness of steel plates
11.4.4.4 Roughness of steel plates
11.4.4.5 Effect of adhesive force
11.4.5 Design recommendation
11.4.6 Summary
References
12---Welded-connectio_2021_Behavior-and-Design-of-High-Strength-Construction
12 Welded connections
12.1 Introduction
12.2 Experimental investigation
12.2.1 Material information
12.2.2 Gas metal arc welding
12.2.3 Digital image correlation measurement and calibration
12.2.4 Measured load-carrying capacity and deformation capacity of butt joints
12.2.5 Linear correlation between strength and hardness
12.2.6 Measured hardness distribution curves of butt joints
12.3 Summarization of experimental results
12.3.1 Three hardness distribution patterns
12.3.2 Strain distribution for each hardness distribution pattern
12.3.3 Strength loss for specimens with different softened heat-affected zone width
12.3.4 Strength increase due to the constraint
12.3.5 Ductility loss due to mismatched connections
12.4 Applicability of Eurocode 3 Part 1–12
12.5 Strength model of butt welds
12.5.1 Theoretical model
12.5.2 Finite element model
12.5.2.1 Material model
12.5.2.2 Numerical experiments
12.5.3 Formula modification for butt joints with rigid constraint under axisymmetric condition
12.5.4 Unified formula for butt joints with rigid constraint under all conditions
12.5.5 Unified formula for butt joint with nonrigid constraint under all conditions
12.5.6 Undermatched cases without softened heat-affected zone
12.5.7 Softened heat-affected zone cases
12.5.8 Interpretation of Eq. (12.15)
12.5.9 Verification of strength model
12.6 Design proposal
12.6.1 Design formula
12.6.2 Design strength
References
13---Application-of-high-strength-steels_2021_Behavior-and-Design-of-High-St
13 Application of high-strength steels in seismic zones and case studies
13.1 Introduction
13.2 Limits related to application of high-strength steel in seismic structures
13.2.1 Effect of material properties on the ductility of structural members
13.2.2 Limits of current design codes
13.3 Proposed methods for application of high-strength steel in seismic structures
13.3.1 Determination of design earthquake action
13.3.2 Selection of structural systems
13.3.3 Adjustment of reliability index
13.4 Information of the case study
13.5 Comparison of structural performance between normal strength steel solution and high-strength steel solution
13.5.1 Period and period ratio
13.5.2 Performance of structures under frequent earthquakes and wind
13.5.3 Performance of structures under rare earthquakes
13.6 Economic evaluation of high-strength steel structures
13.6.1 Evaluation of the prices of structures using different steels
13.6.2 Evaluation of steel consumption
13.6.3 Occupied area of structural members
13.6.4 Foundation construction cost
13.7 Summary
References
Index_2021_Behavior-and-Design-of-High-Strength-Constructional-Steel
Index