The BCS theory of superconductivity developed in 1957 by Bardeen, Cooper and Schrieffer has been remarkably successful in explaining the properties of superconductors. In addition, concepts from BCS have been incorporated into diverse fields of physics, from nuclear physics and dense quark matter to the current standard model. Practical applications include SQUIDs, magnetic resonance imaging, superconducting electronics and the transmission of electricity. This invaluable book is a compilation of both a historical account and a discussion of the current state of theory and experiment. With contributions from many prominent scientists, it aims to introduce students and researchers to the origins, the impact and the current state of the BCS theory.
Author(s): Leon N. Cooper, Dmitriĭ Ėduardovich Felʹdman
Edition: 1
Publisher: World Scientific
Year: 2011
Language: English
Pages: 586
Tags: Физика;Физика твердого тела;Физика сверхпроводимости;
CONTENTS......Page 8
PREFACE......Page 4
I. Historical Perspectives......Page 11
REMEMBRANCE OF SUPERCONDUCTIVITY PAST......Page 13
THE ROAD TO BCS......Page 31
DEVELOPMENT OF CONCEPTS IN SUPERCONDUCTIVITY......Page 43
FAILED THEORIES OF SUPERCONDUCTIVITY......Page 51
References......Page 63
NUCLEAR MAGNETIC RESONANCE AND THE BCS THEORY......Page 67
Reflections......Page 91
Acknowledgments......Page 92
References......Page 93
1. Introduction......Page 95
2. My Ph.D. Thesis......Page 97
3. Physics, Politics, and Collaboration......Page 99
4. John Bardeen and Superconductivity: The Early Years......Page 102
5. With Bardeen in Urbana: 1952-1955......Page 104
6. The 1954 Solvay Congress......Page 109
7. Deciphering, Teaching, and Applying BCS......Page 110
8. BCS and Nuclear Superconductivity in Copenhagen......Page 112
9. Why John Bardeen and Why BCS?......Page 113
References......Page 114
2. Science in the USSR......Page 117
2.1. Superfluidity and superconductivity......Page 119
3. BCS Receives Immediate Recognition in the USSR......Page 121
4. Bogolyubov Canonical Transformation......Page 122
5. Quantum Field Theory Methods (T = 0)......Page 123
7.1. T = O and beyond......Page 124
7.2. Superconducting alloys......Page 128
7.3. Developing thermodynamic QFT technique for statistical physics......Page 129
7.4. Ginsburg Landau equations from microscopic theory......Page 130
7.5. Paramagnetic impurities......Page 132
8. Applications of Quantum Field Theory Methods......Page 133
9. Conclusion......Page 134
References......Page 135
BCS: THE SCIENTIFIC "LOVE OF MY LIFE"......Page 137
References......Page 150
II. Fluctuations, Tunneling and Disorder......Page 153
SQUIDs: THEN AND NOW......Page 155
1. Introduction......Page 156
2. Early dc SQUIDs......Page 159
3. Early rf SQUIDs......Page 165
4. Tunnel Junctions Revisited......Page 166
5. The Flux Transformer......Page 169
6. A Little Theory......Page 170
6.1. dc SQUID......Page 171
6.2. rf SQUID......Page 172
8. Applications of SQUIDs: Overview......Page 174
9.1. Dark energy: Searching for galaxy clusters......Page 177
9.2. Cold dark matter: The hunt for the axion......Page 180
10. SQUID-Detected Microtesla NMR and MRI......Page 184
References......Page 190
1. Introduction......Page 195
2.1. Phase slips in Josephson junctions......Page 202
2.2. Thermal phase slips in a thin wire close to TC......Page 205
2.3. Planar geometries......Page 208
2.4. Thermally excited vortices and the BKT transition......Page 210
2.5. dc resistance in bulk superconductors without magnetic fields......Page 212
2.6. Resistance in an applied magnetic field......Page 213
3. Quantum Fluctuations in Junctions, Wires, and Films......Page 216
3.1. Quantum phase slips in Josephson junctions......Page 217
3.2. Resistively shunted Josephson junction......Page 219
3.3. Quantum phase slips in wires: the quantum K-T transition......Page 223
3.4. Experiments on nanowires......Page 225
3.5. Quantum phase transitions in films......Page 227
4. ac Conductivity......Page 230
5. Systems of Ultra-cold Atoms......Page 231
Acknowledgments......Page 232
References......Page 233
1. Introduction......Page 237
2. Time-reversal Symmetry Breaking......Page 241
3. Nonergodic versus Ergodic Behavior......Page 243
4. Zeeman Splitting of Quasiparticles......Page 248
5. Scattering Centers with Low-Energy Excitations......Page 251
6. Breaking of Anisotropic Pair States......Page 257
7. Pair Formation versus Pair Breaking......Page 259
References......Page 261
1. Introduction......Page 265
2. Materials and Tuning Parameters......Page 266
3. Theoretical Scenarios......Page 267
3.2. The Boson localization scenario......Page 268
4. Scaling Analysis of the Critical Regime of a Continuous SI Transition......Page 272
5. Scaling of Continuous Quantum Phase Transitions......Page 274
6. Metallic Regimes......Page 277
7. Insulating Regimes......Page 278
8. Quantum and Classical Percolation......Page 279
Acknowledgments......Page 281
References......Page 282
1. Introduction......Page 287
2.1. Conventional picture, basics......Page 288
2.2. Limits of the conventional picture......Page 291
2.3.1. Material characteristics and early experimental facts......Page 292
2.3.2. New theories......Page 295
2.3.3. Experiments meet theory: towards a phase diagram......Page 298
3. Melting of the Vortex Lattice......Page 305
3.2. Elasticity of a vortex line and of the vortex lattice (isotropic)......Page 306
3.4. Melting of the elastic vortex lattice......Page 308
3.5. Landau-Ginzburg approach to melting......Page 309
3.6. Superconducting phase coherence and decoupling......Page 311
4.1. Pinning disorder......Page 313
4.2. Larkin Ovchinnikov theory......Page 314
4.3. The Bragg glass......Page 316
4.3.1. The model: coupling a lattice to disorder......Page 317
4.3.2. Variational method: a mean field theory......Page 320
4.3.3. The functional renormalization group (FRG)......Page 321
(a) Quasi-long range order......Page 324
(b) Topological order......Page 328
(c) Creep and glassy features......Page 329
5.1. Vortex glass and gauge glass......Page 332
5.2. Bose glass and splay glass......Page 333
5.3 Moving glasses......Page 336
6. Conclusion......Page 338
References......Page 340
1. Introduction......Page 347
2.1. Order parameter......Page 350
2.2. Population imbalance and breaking of translational symmetry......Page 352
3.1. Mean-field results: quasiclassical theory......Page 361
3.2. Mean-field results: Ginzburg Landau approach......Page 363
4. Search for Experimental Realization......Page 365
4.1. Homogeneous materials......Page 366
4.1.1. Heavy-fermion systems......Page 367
4.1.2. Organic superconductors......Page 369
4.2. Heterogenous systems......Page 375
5. Summary and Outlook......Page 377
References......Page 378
III. New Superconductors......Page 383
1. Introduction......Page 385
2. Materials and Tc......Page 386
3. Before and After the Fact Calculations......Page 390
4. Ab Initio Calculations for Real Material......Page 393
5. Increasing Tc......Page 395
6. Conclusions......Page 397
References......Page 398
1. Introduction......Page 401
2. The LTS-Period: 1911-1986......Page 402
3.1. The cuprate system......Page 404
3.1.1. The first cuprate HTS family with a Tc up to ~35 K: doped R2CuO4; where R = La; rare-earth [R214 or R2001]......Page 406
3.1.2. The first liquid nitrogen cuprate HTS family with a Tc ~93-100 K; RBa2Cu3O7; where R = rare-earth [R123; RBCO or Cu1212]......Page 408
3.1.3. The first cuprate HTS family without rare-earth with a Tc up to110 K: Bi2Sr2Can-1Cun O2n+4, where n = 1, 2, 3,... [BSCCO or Bi22(n-1)n]......Page 412
3.1.4. The second cuprate HTS family without rare-earth with a Tc up to 125 K: Tl2Ba2Can-1Cun O2n+4, where n = 1, 2, 3,... [TBCCO orTl22(n-1)n]......Page 414
3.1.5. The cuprate HTS family with the highest Tc of 134 K at ambient and 164 K at 30 GPa: HgBa2Can-1CunO2n+3-δ, where n = 1, 2, 3, ... [HBCCO or Hg12(n-1)n]......Page 416
3.1.6. The interstitially doped HTS family that forms the base of TBCCO and HBCCO without a volatile toxic element with a Tc of 126 K at ambient: Ba2Can-1CunOx [BCCO or 02(n-1)n]......Page 419
3.1.7. The simplest infinite layer HTS family defected RCuO2 where R = Ca with a Tc ~ 40-110 K [RCO or 0011-R]......Page 420
3.2. The iron pnictides and chalcogenide superconductors......Page 421
3.2.1. The first Fe-pnictide superconductor family with a Tc up to 57 K: doped RFeAsO; where R = rare-earth [R1111]......Page 423
3.2.2. The second Fe-pnictide oxygen-free superconducting family with a Tc up to 38 K: doped AFe2As2, where A = Ba, Sr, Ca [A122]......Page 426
3.2.3. The third family of Fe-pnictide superconductors of the simplest structure with a Tc ~ 23 K without doping and 33 K with doping: undoped A'FeAs where A' = Li, Na [A'111]......Page 427
3.2.4. The first layer Fe-chalcogenide without intervening layers with a Tc of 12 K at ambient and 27 K at 1:5 GPa: FeSe [11]......Page 429
3.3. Heavy fermion superconductors......Page 430
3.3.1.1. CeM2X2 with M = Cu, Pd, Rh or Ni and X = Si or Ge......Page 432
3.3.1.2. CemMIn3m+2 where M = Co or Rh, Ir and m = 1, 2, ....,∞......Page 433
3.3.2. U-based heavy fermion superconductors: UBe13; UPt3; URu2Si2; UPd2Al3; UNi2Al3UGe2; URhGe; UCoGe......Page 434
3.3.3. Actinide-based heavy fermion superconductors: PuCoGa5;PuRhGa5; NpPd5Al2......Page 437
4.1. A practical room temperature superconductor......Page 438
4.2. Examples of interesting claims......Page 439
4.3. Examples of visionary predictions......Page 441
4.4.2. Strongly correlated electron systems with multi-interactions......Page 443
4.4.4. Layered structure with multi-substructures......Page 444
4.5. A holistic, multidisciplinary, enlightened empirical approach......Page 445
Acknowledgments......Page 446
References......Page 447
1. Historical Remarks: Strongly-correlated Electrons......Page 449
2. Phase Diagram and Effective Hamiltonians......Page 450
3. RVB and Gauge Theories......Page 456
4. Phenomenologies......Page 459
4.2. Marginal Fermi liquid......Page 460
4.3. Stripes......Page 462
5. Pseudogap......Page 464
5.1. Preformed pairs......Page 465
5.2. RVB and the pseudogap......Page 466
5.3.1. d-density wave......Page 467
5.3.2. Loop currents in the CuO2 lattice......Page 469
5.4. Antinodal incoherence......Page 470
5.5. Some open questions on the pseudogap......Page 471
6. Quantum Criticality......Page 472
7. Superconductivity......Page 473
8. Conclusion......Page 475
References......Page 476
IV. BCS Beyond Superconductivity......Page 481
THE SUPERFLUID PHASES OF LIQUID 3He: BCS THEORY......Page 483
Acknowledgment......Page 499
References......Page 500
1. From 1908 to 2008......Page 501
2. Ultralow-density Condensed Matter Physics......Page 503
3. Realization of the BEC-BCS Crossover......Page 504
4. Superuidity with Population Imbalance......Page 506
5. Two-component Fermi Mixture in a Harmonic Potential......Page 507
6. Phase Diagram at Unitarity......Page 508
7. Strongly Interaction Bose-Fermi Mixture......Page 510
8. Tomographic RF Spectroscopy with a New Superuid......Page 511
9. Summary and Discussion......Page 513
References......Page 514
1. Introduction......Page 519
2. Application to Nuclei: Copenhagen, 1957......Page 520
3. Neutron Stars......Page 521
4. Pairing in Quark Matter......Page 525
5. Coupling of Pairing and Chiral Symmetry......Page 526
6. BEC-BCS Crossover and the Deconnement Transition......Page 528
References......Page 531
ENERGY GAP, MASS GAP, AND SPONTANEOUS SYMMETRY BREAKING......Page 535
References......Page 543
BCS AS FOUNDATION AND INSPIRATION: THE TRANSMUTATION OF SYMMETRY......Page 545
1.1. QCD meets BCS......Page 546
1.2.1. Ground state......Page 549
1.2.2. Elementary excitations......Page 552
1.2.3. Electric charge......Page 553
1.2.4. Material properties......Page 554
1.3. Beyond color-avor locking......Page 555
2.1. Gauge-rotation locking......Page 556
2.2. Anyons......Page 558
2.3. Nonabelian anyons......Page 562
2.4. Pairing, statistical transmutation and zero modes......Page 565
References......Page 567
FROM BCS TO THE LHC......Page 569
References......Page 578
INDEX......Page 579