Bayesian Models for Categorical Data (Wiley Series in Probability and Statistics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Using Bayesian methods to analyze data has become common in applied statistics, social sciences, and medicine, along with other disciplines requiring close work with a diverse set of data. In this undergraduate text, Congdon (Queen Mary College, U. of London) takes a practical and accessible approach, focusing on statistical computing and applied data as he covers the principles of Bayesian inference, model comparison and choice, regression for metric outcomes, models for binary and count outcomes, random effect and latent variable models for multi-category outcomes, ordinal regression, discrete spatial data, time series models for discrete variables, hierarchical and panel data models and missing-data models.

Author(s): Peter Congdon
Series: Wiley Series in Probability and Statistics
Edition: 1
Publisher: Wiley
Year: 2005

Language: English
Pages: 447