The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the Picard operators technique, critical point theory and semigroups theory. Based on research work carried out by the author and other experts during the past four years, the contents are very new and comprehensive. It is useful to researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and related disciplines.
Readership: Graduate students and researchers in the fields of fractional differential equations, fractional calculus and related areas of research.