Basic Model Theory

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Model theory investigates the relationships between mathematical structures ('models') on the one hand and formal languages (in which statements about these structures can be formulated) on the other. Example structures are: the natural numbers with the usual arithmetical operations, the structures familiar from algebra, ordered sets, etc. The emphasis is on first-order languages, the model theory of which is best known. An example result is L?wenheim's theorem (the oldest in the field): a first-order sentence true of some uncountable structure must hold in some countable structure as well. Second-order languages and several of their fragments are dealt with as well. As the title indicates, this book introduces the reader to what is basic in model theory. A special feature is its use of the Ehrenfeucht game by which the reader is familiarised with the world of models.

Author(s): Kees Doets
Series: Studies in Logic, Language, and Information
Edition: 1
Publisher: FoLLI, CSLI Publications
Year: 1996

Language: English
Commentary: +OCR
Pages: 74