Description:
This book will get you there if you believe in it. It has examples with solutions and problems with solutions. The only topic that does not have problems with solutions is categories. For this, I have the Hungerford text, and I am presently in the process of finding a better book for this. Otherwise it is the perfect book for self-study.
In addition to many new problems for practice and challenge, this edition of a self-contained graduate text on abstract algebra contains an introduction to lattices, a new chapter on tensor products and a discussion of the new (1993) approach to the celebrated Lasker-Noether theorem.
Author(s): P.B. Bhattacharya; S.R. Nagpaul; Surender K. Jain
Edition: 2
Publisher: Cambridge University Press
Year: 1994
Language: English
Pages: 509
Front Cover......Page 1
Title......Page 4
Copyright......Page 5
Dedication......Page 6
Contents......Page 8
Preface to the second edition......Page 14
Preface to the first edition......Page 15
Glossary of symbols......Page 19
Part I Preliminaries......Page 22
1. Sets ......Page 24
2. Relations ......Page 30
3. Mappings ......Page 35
4. Binary operations ......Page 42
5. Cardinality of a set......Page 46
1. Integers ......Page 51
2. Rational, real, and complex numbers ......Page 56
3. Fields ......Page 57
1. Matrices ......Page 60
2. Operations on matrices ......Page 62
3. Partitions of a matrix ......Page 67
4. The determinant function ......Page 68
5. Properties of the determinant function ......Page 70
6. Expansion of det A ......Page 74
Part II Groups......Page 80
I. Semigroups and groups......Page 82
2. Homomorphisms ......Page 90
3. Subgroups and cosets ......Page 93
4. Cyclic groups ......Page 103
5. Permutation groups ......Page 105
6. Generators and relations ......Page 111
1. Normal subgroups and quotient groups ......Page 112
2. Isomorphism theorems ......Page 118
3. Automorphisms ......Page 125
4. Conjugacy and G-sets......Page 128
1. Normal series ......Page 141
2. Solvable groups ......Page 145
3. Nilpotent groups ......Page 147
1. Cyclic decomposition......Page 150
2. Alternating group ......Page 153
3. Simplicity of ......Page 156
1. Direct products ......Page 159
2. Finitely generated abelian groups ......Page 162
3. Invariants of a finite abelian group ......Page 164
4. Sylow theorems ......Page 167
5. Groups of orders p2. pq ......Page 173
Part III Rings and modules......Page 178
1. Definition and examples ......Page 180
2. Elementary properties of rings......Page 182
3. Types of rings ......Page 184
4. Subrings and characteristic of a ring ......Page 189
5. Additional examples of rings ......Page 197
1. Ideals ......Page 200
2. Homomorphisms ......Page 208
3. Sum and direct sum of ideals ......Page 217
4. Maximal and prime ideals ......Page 224
5. Nilpotent and nil ideals ......Page 230
6. Zorn's lemma ......Page 231
1. Unique factorization domains ......Page 233
2. Principal ideal domains ......Page 237
3. Euclidean domains......Page 238
4. Polynomial rings over UFD ......Page 240
1. Rings of fractions ......Page 245
2. Rings with Ore condition ......Page 249
1, Peano's axioms ......Page 254
2. Integers ......Page 261
1. Definition and examples ......Page 267
2. Submodules and direct sums ......Page 269
3. R-homomorphisms and quotient modules ......Page 274
4. Completely reducible modules ......Page 281
5. Free modules ......Page 284
6. Representation of linear mappings ......Page 289
7. Rank of a linear mapping ......Page 294
1. Irreducible polynomials and Eisenstein criterion ......Page 302
2. Adjunction of roots ......Page 306
3. Algebraic extensions ......Page 310
4. Algebraically closed fields......Page 316
1. Splitting fields ......Page 321
2. Normal extensions......Page 325
3. Multiple roots ......Page 328
4. Finite fields ......Page 331
5. Separable extensions ......Page 337
1. Automorphism groups and fixed fields ......Page 343
2. Fundamental theorem of Galois theory ......Page 351
3. Fundamental theorem of algebra ......Page 359
1. Roots of unity and cyclotomic polynomials ......Page 361
2. Cyclic extensions......Page 365
3. Polynomials solvable by radicals ......Page 369
4. Symmetric functions ......Page 376
5. Ruler and compass constructions ......Page 379
1. HomR ......Page 388
2. Noetherian and artinian modules ......Page 389
3. Wedderburn?rtin theorem ......Page 403
4. Uniform modules, primary modules, and Noether?asker theorem ......Page 409
1. Preliminaries ......Page 413
2. Row module, column module, and rank ......Page 414
3. Smith normal form......Page 415
1. Decomposition theorem ......Page 423
2. Uniqueness of the decomposition ......Page 425
3. Application to finitely generated abelian groups ......Page 429
4. Rational canonical form ......Page 430
5. Generalized Jordan form over any field ......Page 439
1. Categories and functors ......Page 447
2. Tensor products ......Page 449
3. Module structure of tensor product ......Page 452
4. Tensor product of homomorphisms ......Page 454
5. Tensor product of algebras......Page 457
Solutions to odd-numbered problems ......Page 459
Selected bibliography......Page 497
Index ......Page 498
Back Cover......Page 509