In questo testo si introducono i concetti fondamentali per la modellistica numerica di problemi differenziali alle derivate parziali. Si considerano le classiche equazioni lineari ellittiche, paraboliche ed iperboliche, ma anche altre equazioni, quali quelle di diffusione e trasporto, di Navier-Stokes, e le leggi di conservazione. Si forniscono numerosi esempi fisici che stanno alla base di tali equazioni, se ne studiano le principali proprieta' matematiche, quindi si propongono ed analizzano metodi di risoluzione numerica basati su elementi finiti, differenze finite, volumi finiti e metodi spettrali. In particolare vengono discussi gli aspetti algoritmici e di implementazione al calcolatore e si forniscono alcuni programmi in linguaggio C++ di semplice utilizzo. Il testo non presuppone una avanzata conoscenza matematica delle equazioni alle derivate parziali: i concetti rigorosamente indispensabili al riguardo sono riportati nell'Appendice. IL VOLUME ? pertanto adatto agli studenti dei corsi di laurea di indirizzo scientifico (Ingegneria, Matematica, Fisica, Chimica, Scienze dell'Informazione) e consigliabile a ricercatori del mondo accademico ed extra-accademico che vogliano avvicinarsi a questo interessante ramo della matematica applicata.
Author(s): Alfio Quarteroni, Fausto Saleri (auth.)
Series: UNITEXT
Publisher: Springer Milan
Year: 2006
Language: Italian
Pages: 3a ed., X, 306 pagg.
Tags: Mathematics, general; Analysis; Numerical Analysis; Applications of Mathematics; Computational Mathematics and Numerical Analysis; Computational Science and Engineering
Quel che non si può non sapere....Pages 1-36
Equazioni non lineari....Pages 37-67
Approssimazione di funzioni e di dati....Pages 69-98
Differenziazione ed integrazione numerica....Pages 99-120
Sistemi lineari....Pages 121-163
Autovalori ed autovettori....Pages 165-183
Equazioni differenziali ordinarie....Pages 185-233
Metodi numerici per problemi ai limiti....Pages 235-253
Soluzione degli esercizi proposti....Pages 255-294