In the near future, we will witness vehicles with the ability to provide drivers with several advanced safety and performance assistance features. Autonomous technology in ground vehicles will afford us capabilities like intersection collision warning, lane change warning, backup parking, parallel parking aids, and bus precision parking. Providing professionals with a practical understanding of this technology area, this innovative resource focuses on basic autonomous control and feedback for stopping and steering ground vehicles. Covering sensors, estimation, and sensor fusion to percept vehicle motion and surrounding objects, this unique book explains the key aspects that makes autonomous vehicle behavior possible. Moreover, practitioners find detailed examples of fusion and Kalman filtering. From maps, path planning, and obstacle avoidance scenarios...to cooperative mobility among autonomous vehicles, vehicle-to-vehicle communication, and vehicle-to-infrastructure communication, this forward-looking book presents the most critical topics in the field today.
Author(s): Ümit Özgüner, Tankut Acarman, Keith Alan Redmill
Series: Intelligent transportation systems
Publisher: Artech House Publishers
Year: 2011
Language: English
Pages: 277
Tags: Транспорт;Автомобильная и тракторная техника;
Cover......Page 1
Autonomous Ground Vehicles......Page 2
Contents......Page 6
Preface......Page 10
1.2.2 Actuators......Page 12
1.3.1 Research and Experiments on Autonomous Vehicles......Page 14
1.3.2 Autonomous Driving Demonstrations......Page 16
1.3.3 Recent Appearances in the Market......Page 19
1.4 Contents of this Book......Page 21
References......Page 22
2.1.1 Speed Control Using Point Mass and Force Input......Page 24
2.1.2 Stopping......Page 26
2.1.3 Swerving......Page 28
2.2.1 Car Following and Advanced Cruise Control......Page 29
2.2.2 Steering Control Using Point Mass Model: Open Loop Commands......Page 33
2.2.3 Steering Control Using Point Mass Model: Closed-Loop Commands......Page 39
2.2.4 Polynomial Tracking......Page 43
2.2.5 Continuous and Smooth Trajectory Establishment......Page 44
2.2.6 The Need for Command Sequencing......Page 45
References......Page 46
3.1.2 Task Hierarchies for Autonomous Vehicles......Page 48
3.2.1 Discrete Event Systems, Finite State Machines, and Hybrid Systems......Page 54
3.2.2 Another Look at ACC......Page 55
3.2.3 Application to Obstacle Avoidance......Page 56
3.2.4 Another Example: Two Buses in a Single Lane......Page 60
3.3.1 Macrostates: Highway, City, and Off-Road Driving......Page 66
3.3.2 The Demo ’97 State Machine......Page 68
3.3.3 Grand Challenge 2 State Machine......Page 72
3.3.4 The Urban Challenge State Machine......Page 75
References......Page 78
4.1 Sensor Characteristics......Page 80
4.2.1 OEM Vehicle Sensors......Page 81
4.2.2 Global Positioning System (GPS)......Page 82
4.2.3 Inertial Measurements......Page 91
4.2.4 Magnetic Compass (Magnetometer)......Page 92
4.3 External World Sensing......Page 95
4.3.1 Radar......Page 96
4.3.2 LIDAR......Page 97
4.3.3 Image Processing Sensors......Page 99
4.3.4 Cooperative Infrastructure Technologies......Page 104
4.4.1 An Introduction to the Kalman Filter......Page 106
4.4.2 Example......Page 108
4.4.3 Another Example of Kalman Filters: Vehicle Tracking for Crash Avoidance......Page 110
4.5.1 Vehicle Localization (Position and Orientation)......Page 112
4.5.2 External Environment Sensing......Page 114
4.5.3 Occupancy Maps and an Off-Road Vehicle......Page 117
4.5.4 Cluster Tracking and an On-Road Urban Vehicle......Page 128
4.6 Situational Awareness......Page 144
4.6.1 Structure of a Situation Analysis Module......Page 145
4.6.2 Road and Lane Model Generation......Page 147
4.6.3 Intersection Generation......Page 151
4.6.4 Primitives......Page 152
4.6.5 Track Classification......Page 154
References......Page 158
5.1 Cruise Control......Page 160
5.1.1 Background......Page 161
5.1.2 Speed Control with an Engine Model......Page 162
5.1.3 More Complex Systems......Page 169
5.2.1 Background......Page 172
5.2.2 Slip......Page 173
5.2.3 An ABS System......Page 176
5.3.2 Steering Control......Page 178
5.3.3 Lane Following......Page 189
5.4 Parking......Page 193
5.4.1 Local Coordinates......Page 194
5.4.2 Parking Scenarios: General Parking Scenario and DARPA Urban Challenge Autonomous Vehicle Parking Scenario......Page 195
5.4.3 Simulation and Experimental Results......Page 201
References......Page 202
6.1 Map Databases......Page 204
6.1.1 Raster Map Data......Page 205
6.1.2 Vector Map Data......Page 206
6.1.3 Utilizing the Map Data......Page 207
6.2 Path Planning......Page 209
6.2.1 Path Planning in an Off-Road Environment......Page 210
6.2.2 An Off-Road Grid-Based Path Planning Algorithm......Page 212
6.2.3 Other Off-Road Path Planning Approaches......Page 215
6.2.4 An On-Road Path Planning Algorithm......Page 217
References......Page 226
7.1 Introduction......Page 228
7.2 Vehicle-to-Vehicle Communication (V2V)......Page 231
7.3 Vehicle-to-Infrastructure Communication (V2I)......Page 234
7.4.4 Narrowband Licensed 220 MHz......Page 235
7.5 802.11p/WAVE DSRC Architecture and U.S./EU Standards......Page 236
7.5.1 802.11P Physical Layer......Page 238
7.5.2 1609.4 Channelization Overview......Page 239
7.5.3 1609.3 Network Management......Page 241
7.5.4 EU Programs and Standards Activity......Page 242
7.6 Potential Applications in an Autonomous Vehicle......Page 243
7.6.1 Platoons and Adaptive Cruise Control (ACC)......Page 244
7.6.3 Urban Driving with Stop-and-Go Traffic......Page 249
References......Page 255
Selected Bibliography......Page 256
8.1.1 Fault Tolerance......Page 258
8.1.2 Driver Modeling......Page 260
8.2 And the Beat Goes On......Page 262
References......Page 266
A.1 Two-Wheel Vehicle (Bicycle) Model......Page 268
A.2.1 Lateral, Longitudinal, and Yaw Dynamics......Page 271
A.2.2 Suspension Forces and Tire Dynamics......Page 274
A.2.3 Tire Forces......Page 275
About the Authors......Page 280
Index......Page 282