Automated Rendezvous and Docking of Spacecraft (Cambridge Aerospace Series)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This definitive reference for space engineers provides an overview of the major issues governing approach and mating strategies, and system concepts for rendezvous & docking/berthing (RVD/B). These concerns are addressed and explained in a way that aerospace engineers, students and even newcomers to the field can acquire a basic understanding of RVD/B.

Author(s): Wigbert Fehse
Publisher: Cambridge University Press
Year: 2003

Language: English
Pages: 517

0521824923......Page 1
Series-title......Page 5
Title......Page 7
Copyright......Page 8
Dedication......Page 9
Contents......Page 11
Preface......Page 17
Symbols......Page 20
1.1 Background......Page 23
1.2 The complexity of the rendezvous process......Page 25
1.3 Objective and scope......Page 28
2.1.1 The launch window......Page 30
2.1.2 Definition of orbit plane and other orbit parameters......Page 31
2.1.3 Launch operations flexibility......Page 32
2.1.4 Vehicle state at end of launch phase......Page 33
2.2.2 Correction of time deviations and orbit parameters......Page 34
2.2.4 Forward/backward phasing......Page 35
2.2.5 Different phasing strategy for each mission......Page 36
2.2.6 Location of the initial aim point......Page 37
2.2.8 Final accuracy of open loop manoeuvres......Page 38
2.3.2 Relative navigation during rendezvous......Page 39
2.3.4 Communication with the target station......Page 40
2.4.1 Closing......Page 41
2.4.2 Final approach to contact......Page 43
2.5.1 Objectives and end conditions of the mating phase......Page 46
2.5.2 Capture issues......Page 47
2.6.2 Constraints and issues during departure......Page 48
3.1 Reference frames......Page 51
3.1.2 Orbital plane frame F......Page 52
3.1.3 Spacecraft local orbital frame F......Page 53
3.1.4 Spacecraft attitude frame F......Page 54
3.1.5 Spacecraft geometric frames F......Page 55
3.2.1 Orbital motion around a central body......Page 56
3.2.2 Orbit corrections......Page 59
3.2.3 The equations of motion in the target reference frame......Page 62
3.3 Discussion of trajectory types......Page 63
3.3.1 Free drift motions......Page 64
3.3.2 Impulsive manoeuvres......Page 70
3.3.3 Continuous thrust manoeuvres......Page 80
3.4 Final remark on the equations of motion......Page 94
3.4.1 Examples for combined cases......Page 96
4.1 Trajectory safety – trajectory deviations......Page 98
4.1.1 Failure tolerance and trajectory design requirements......Page 99
4.1.2 Design rules for trajectory safety......Page 100
4.1.3 Causes of deviations from the planned trajectory......Page 101
4.2 Trajectory disturbances......Page 102
4.2.1 Drag due to residual atmosphere......Page 103
4.2.2 Disturbances due to geopotential anomaly......Page 107
4.2.3 Solar pressure......Page 109
4.2.4 Dynamic interaction of thruster plumes between chaser and target......Page 111
4.3.1 Trajectory deviations due to navigation errors......Page 112
4.3.2 Trajectory deviations due to thrust errors......Page 115
4.3.3 Trajectory deviations due to thruster failures......Page 119
4.4.1 Active trajectory protection......Page 120
4.4.2 Passive trajectory protection......Page 123
4.5 Collision avoidance manoeuvres......Page 129
5.1 Overview of constraints on the approach strategy......Page 134
5.2.1 The drift of nodes......Page 136
5.2.2 Adjustment of arrival time......Page 137
5.3.1 Location and direction of target capture interfaces......Page 138
5.3.2 Range of operation of rendezvous sensors......Page 146
5.4 Synchronisation monitoring needs......Page 148
5.4.1 Sun illumination......Page 149
5.4.2 Communication windows......Page 155
5.4.3 Crew activities......Page 158
5.4.4 Time-flexible elements in phasing and approach......Page 159
5.5 Onboard resources and operational reserves......Page 162
5.6 Approach rules defined by the target......Page 163
5.7.1 Approach strategy, example 1......Page 166
5.7.2 Approach strategy, example 2......Page 177
5.7.3 Approach strategy, example 3......Page 186
6.1 Tasks and functions......Page 193
6.2 Guidance, navigation and control......Page 195
6.2.1 The navigation filter......Page 196
6.2.2 The guidance function......Page 202
6.2.3 The control function......Page 206
6.3 Mode sequencing and equipment engagement......Page 225
6.4 Fault identification and recovery concepts......Page 229
6.5 Remote interaction with the automatic system......Page 234
6.5.1 Interaction with the GNC functions......Page 235
6.5.2 Manual state update for the automatic GNC system......Page 236
6.5.3 Automatic GNC system with man-in-the-loop......Page 237
7 Sensors for rendezvous navigation......Page 240
7.1.1 Measurement requirements......Page 241
7.1.2 Measurement principles......Page 251
7.2.1 Principles of range and range-rate measurement......Page 253
7.2.2 Principles of direction and relative attitude measurement......Page 260
7.2.3 Measurement environment, disturbances......Page 264
7.2.4 General assessment of RF-sensor application......Page 265
7.2.5 Example: the Russian Kurs system......Page 267
7.3.1 Description of the navigation satellite system setup......Page 272
7.3.2 Navigation processing at the user segment......Page 276
7.3.3 Functional principle of differential GPS and relative GPS......Page 282
7.3.4 Measurement environment, disturbances......Page 286
7.3.5 General assessment of satellite navigation for RVD......Page 288
7.4.1 Scanning laser range finder......Page 289
7.4.2 Camera type of rendezvous sensor......Page 294
7.4.3 Measurement environment, disturbances......Page 299
7.4.4 General assessment of optical sensors for rendezvous......Page 301
8.1 Basic concepts of docking and berthing......Page 305
8.1.1 Docking operations......Page 306
8.1.2 Berthing operations......Page 308
8.1.3 Commonalities and major differences between docking and berthing......Page 310
8.2 Types of docking and berthing mechanisms......Page 312
8.2.1 Design driving requirements......Page 313
8.2.2 Central vs. peripheral docking mechanisms......Page 315
8.2.3 Androgynous design of docking mechanisms......Page 317
8.2.4 Unpressurised docking/berthing mechanisms......Page 318
8.2.5 Examples of docking and berthing mechanisms......Page 319
8.3.1 Momentum exchange at contact......Page 327
8.3.2 Shock attenuation dynamics......Page 329
8.3.3 Example case for momentum exchange and shock attenuation......Page 334
8.3.4 Devices for shock attenuation and alignment for capture......Page 338
8.3.5 Capture devices......Page 343
8.3.6 The interface between the GNC and the mating system......Page 349
8.4 Elements for final connection......Page 351
8.4.1 Structural latches......Page 352
8.4.2 Seals......Page 355
9 Space and ground system setup......Page 358
9.1.1 General system setup for a rendezvous mission......Page 359
9.1.2 Control responsibilities and control hierarchy......Page 362
9.2.1 The concept of supervisory control......Page 366
9.2.2 The functions of a support tool for ground operators......Page 368
9.2.3 Monitoring and control functions for the target crew......Page 372
9.3 Communication constraints......Page 375
9.3.1 Data transfer reliability......Page 376
9.3.2 Data transmission constraints......Page 378
10 Verification and validation......Page 384
10.1 Limitations of verification and validation......Page 385
10.2 RVD verification/validation during development......Page 386
10.2.1 Features particular to rendezvous and docking......Page 387
10.2.2 Verification stages in the development life-cycle......Page 388
10.3 Verification methods and tools......Page 391
10.3.1 Mission definition and feasibility phase......Page 392
10.3.2 Design phase......Page 393
10.3.3 Development phase......Page 397
10.3.4 Verification methods for operations and tools for remote operators......Page 403
10.3.5 Flight item manufacture phase......Page 407
10.4 Modelling of spacecraft items and orbital environment......Page 409
10.4.1 Modelling of environment simulation for RV-control system test......Page 410
10.4.2 Modelling for contact dynamics simulation......Page 418
10.5.1 Validation of GNC environment simulation models......Page 420
10.5.2 Validation of contact dynamics simulation models......Page 424
10.5.3 Validation of simulator programs and stimulation facilities......Page 425
10.6.1 Verification facilities based on mathematical modelling......Page 426
10.6.2 Example of a stimulation facility for optical sensors......Page 428
10.6.3 Dynamic stimulation facilities for docking......Page 430
10.7.1 Purpose and limitations of in-orbit demonstrations......Page 433
10.7.2 Demonstration of critical features and equipment......Page 434
10.7.3 Demonstration of RV-system and operations in orbit......Page 439
A.1.1 General system of differential equations......Page 446
A.1.2 Homogeneous solution......Page 451
A.1.3 Particular solution......Page 453
A.1.4 Discrete time state space system......Page 456
A.1.5 Travelling ellipse formulation......Page 457
A.2.1 Direction cosine matrix (DCM)......Page 459
A.2.2 Nonlinear dynamics......Page 460
A.2.4 Linear kinematics and dynamics attitude model......Page 461
B.1 Space Shuttle Orbiter......Page 463
B.2 Soyuz/Progress......Page 467
Appendix C Rendezvous vehicles of the ISS scenario......Page 472
C.1 International Space Station......Page 473
C.2 Russian Space Station ‘Mir’......Page 478
C.3 Space Shuttle Orbiter......Page 481
C.4 Soyuz......Page 483
C.5 Progress......Page 485
C.6 ATV......Page 487
C.7 HTV......Page 489
Abbreviations and acronyms......Page 492
Terminology......Page 495
References......Page 499
Index......Page 508