Asymptotic Theory of Transaction Costs

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A classical topic in Mathematical Finance is the theory of portfolio optimization. Robert Merton's work from the early seventies had enormous impact on academic research as well as on the paradigms guiding practitioners. One of the ramifications of this topic is the analysis of (small) proportional transaction costs, such as a Tobin tax. The lecture notes present some striking recent results of the asymptotic dependence of the relevant quantities when transaction costs tend to zero. An appealing feature of the consideration of transaction costs is that it allows for the first time to reconcile the no arbitrage paradigm with the use of non-semimartingale models, such as fractional Brownian motion. This leads to the culminating theorem of the present lectures which roughly reads as follows: for a fractional Brownian motion stock price model we always find a shadow price process for given transaction costs. This process is a semimartingale and can therefore be dealt with using the usual machinery of mathematical finance. Keywords: Portfolio optimization, transaction costs, shadow price, semimartingale, fractional Brownian motion

Author(s): Walter Schachermayer
Series: Zurich Lectures in Advanced Mathematics
Publisher: European Mathematical Society
Year: 2017

Language: English
Pages: 160
Tags: Probability & Statistics;Applied;Mathematics;Science & Math