Asymptotic Theory of Nonlinear Regression

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Let us assume that an observation Xi is a random variable (r.v.) with values in 1 1 (1R1 , 8 ) and distribution Pi (1R1 is the real line, and 8 is the cr-algebra of its Borel subsets). Let us also assume that the unknown distribution Pi belongs to a 1 certain parametric family {Pi() , () E e}. We call the triple £i = {1R1 , 8 , Pi(), () E e} a statistical experiment generated by the observation Xi. n We shall say that a statistical experiment £n = {lRn, 8 , P; ,() E e} is the product of the statistical experiments £i, i = 1, ... ,n if PO' = P () X ... X P () (IRn 1 n n is the n-dimensional Euclidean space, and 8 is the cr-algebra of its Borel subsets). In this manner the experiment £n is generated by n independent observations X = (X1, ... ,Xn). In this book we study the statistical experiments £n generated by observations of the form j = 1, ... ,n. (0.1) Xj = g(j, (}) + cj, c c In (0.1) g(j, (}) is a non-random function defined on e , where e is the closure in IRq of the open set e ~ IRq, and C j are independent r. v .-s with common distribution function (dJ.) P not depending on ().

Author(s): Alexander V. Ivanov (auth.)
Series: Mathematics and Its Applications 389
Edition: 1
Publisher: Springer Netherlands
Year: 1997

Language: English
Pages: 330
Tags: Statistics, general; Probability Theory and Stochastic Processes; Applications of Mathematics; Mathematical Modeling and Industrial Mathematics; Systems Theory, Control

Front Matter....Pages i-vi
Introduction....Pages 1-3
Consistency....Pages 5-78
Approximation by a Normal Distribution....Pages 79-153
Asymptotic Expansions Related to the Least Squares Estimator....Pages 155-250
Geometric Properties of Asymptotic Expansions....Pages 251-288
Back Matter....Pages 289-330