Asymptotic Theory of Finite Dimensional Normed Spaces: Isoperimetric Inequalities in Riemannian Manifolds

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Vol. 1200 of the LNM series deals with the geometrical structure of finite dimensional normed spaces. One of the main topics is the estimation of the dimensions of euclidean and l^n p spaces which nicely embed into diverse finite-dimensional normed spaces. An essential method here is the concentration of measure phenomenon which is closely related to large deviation inequalities in Probability on the one hand, and to isoperimetric inequalities in Geometry on the other. The book contains also an appendix, written by M. Gromov, which is an introduction to isoperimetric inequalities on riemannian manifolds. Only basic knowledge of Functional Analysis and Probability is expected of the reader. The book can be used (and was used by the authors) as a text for a first or second graduate course. The methods used here have been useful also in areas other than Functional Analysis (notably, Combinatorics).

Author(s): Vitali D. Milman, Gideon Schechtman
Series: Lecture Notes in Mathematics
Publisher: Springer
Year: 2002

Language: English
Pages: 166