This book examines the new and important technology of asymmetric passive components for miniaturized microwave passive circuits. The asymmetric design methods and ideas set forth by the author are groundbreaking and have not been treated in previous works. Readers discover how these design methods reduce the circuit size of microwave integrated circuits and are also critical to reducing the cost of equipment such as cellular phones, radars, antennas, automobiles, and robots.An introductory chapter on the history of asymmetric passive components, which began with asymmetric ring hybrids first described by the author, sets the background for the book. It lays a solid foundation with a chapter examining microwave circuit parameters such as scattering, ABCD, impedance, admittance, and image. A valuable feature of this chapter is a conversion table between the various circuit matrices characterizing two-port networks terminated in arbitrary impedances. The correct conversion has also never been treated in previous works.Next, the author sets forth a thorough treatment of asymmetric passive component design, which covers the basic and indispensable elements for integration with other active or passive devices, including:* Asymmetric ring hybrids* Asymmetric branch-line hybrids* Asymmetric three-port power dividers and N-way power dividers* Asymmetric ring hybrid phase shifters and attenuators* Asymmetric ring filters and asymmetric impedance transformersWith its focus on the principles of circuit element design, this is a must-have graduate-level textbook for students in microwave engineering, as well as a reference for design engineers who want to learn the new and powerful design method for asymmetric passive components.
Author(s): Hee-Ran Ahn
Edition: 1
Publisher: Wiley-Interscience
Year: 2006
Language: English
Pages: 291
Front-cover......Page 1
Front-matter......Page 2
Asymmetric Passive Components in Microwave Integrated Circuits......Page 4
Copyright Page......Page 7
Contents......Page 8
Preface......Page 14
1.1 Asymmetric Passive Components......Page 16
1.2 Circuit Parameters......Page 17
1.3.1 Asymmetric Ring Hybrids......Page 18
1.3.2 Asymmetric Branch-Line Hybrids......Page 19
1.4 Asymmetric Three-Port Power Dividers......Page 20
References......Page 21
2.1 Scattering Matrix......Page 25
2.1.1 Transmission-Line Theory......Page 26
2.1.2 Basis-Dependent Scattering Parameters of a One-Port Network......Page 27
2.1.3 Voltage- and Current-Basis Scattering Matrices of n-Port Networks......Page 29
2.1.4 Complex Normalized Scattering Matrix......Page 32
2.2 Scattering Parameters of Reduced Multiports......Page 33
2.2.1 Examples of Reduced Multiports......Page 36
2.3 Two-Port Network Analysis Using Scattering Parameters......Page 38
2.4.1 ABCD Parameters......Page 44
2.4.2 Open-Circuit Impedance and Short-Circuit Admittance Parameters......Page 51
2.4.3 Conversion Matrices of Two-Port Networks Terminated in Arbitrary Impedances......Page 55
2.5.1 Analyses with Even- and Odd-Mode Excitations......Page 58
2.5.2 Useful Symmetric Two-Port Networks......Page 60
2.6.1 Image Impedances......Page 62
2.6.2 Image Propagation Constants......Page 64
2.6.3 Symmetrical and Common Structures......Page 65
Exercises......Page 67
References......Page 69
3.1 Introduction......Page 71
3.2 Original Concept of the 3-dB Ring Hybrid......Page 72
3.3.1 Coupled Transmission Lines......Page 77
3.3.2 Ring Hybrids with Coupled Transmission Lines......Page 83
3.3.3 Wideband Ring Hybrids......Page 86
3.3.4 Symmetric Ring Hybrids with Arbitrary Power Divisions......Page 89
3.3.5 Conventional Lumped-Element Ring Hybrids......Page 92
3.3.6 Mixed Small Ring Hybrids......Page 95
3.4 Conventional 3-dB Uniplanar Ring Hybrids......Page 99
3.4.1 Uniplanar T-Junctions......Page 100
3.4.3 Wideband Uniplanar Baluns......Page 101
3.4.4 Uniplanar Ring Hybrids......Page 103
Exercises......Page 105
References......Page 106
4.2 Derivation of Design Equations of Asymmetric Ring Hybrids......Page 108
4.3 Small Asymmetric Ring Hybrids......Page 114
4.4.1 Microstrip Asymmetric Ring Hybrids......Page 115
4.4.2 Uniplanar Asymmetric Ring Hybrids......Page 117
4.5.1 Asymmetric Lumped-Element Ring Hybrids......Page 121
References......Page 137
5.2 Origin of Branch-Line Hybrids......Page 140
5.3 Multisection Branch-Line Couplers......Page 142
5.4 Branch-Line Hybrids for Impedance Transforming......Page 147
5.5.1 Analyses of Asymmetric Four-Port Hybrids......Page 154
5.5.2 Conventional–Direction Asymmetric Branch-Line Hybrids......Page 155
5.5.3 Anti-Conventional-Direction Asymmetric Branch-Line Hybrids......Page 162
Exercises......Page 165
References......Page 166
6.1 Introduction......Page 169
6.2 Three-Port 3-dB Power Dividers......Page 170
6.3 Three-Port Power Dividers with Arbitrary Power Divisions......Page 171
6.4 Symmetric Analyses of Asymmetric Three-Port Power Dividers......Page 175
6.5 Three-Port 3-dB Power Dividers Terminated in Complex Frequency-Dependent Impedances......Page 178
6.6 Three-Port 45° Power Divider/Combiner......Page 182
References......Page 183
7.1 Introduction......Page 185
7.2 Perfect Isolation Condition......Page 186
7.3 Analyses......Page 188
7.4 Scattering Parameters of Three-Port Power Dividers......Page 192
7.5 Lumped-Element Three-Port 3-dB Power Dividers......Page 201
7.6 Coplanar Three-Port 3-dB Power Dividers......Page 203
Exercises......Page 204
References......Page 205
8.1 Introduction......Page 207
8.2 General Design Equations for Three-Port Power Dividers......Page 208
8.2.1 Coplanar Three-Port Power Divider Terminated in 50 Ω, 60 Ω, and 70 Ω......Page 211
8.2.2 Determining Z(Ad)......Page 212
8.3 General Design Equations for N-Way Power Dividers......Page 214
8.3.1 Analyses of N-Way Power Dividers......Page 215
References......Page 219
9.1 Introduction......Page 221
9.2 Scattering Parameters of Asymmetric Ring Hybrids......Page 222
9.3 Asymmetric Ring-Hybrid Phase Shifters......Page 224
9.4 Asymmetric Ring-Hybrid Attenuator with Phase Shifts......Page 231
9.4.1 Microstrip Asymmetric Ring-Hybrid 4-dB Attenuator with 45° Phase Shift......Page 235
Exercises......Page 237
References......Page 238
10.1 Introduction......Page 240
10.2.1 Analyses of Ring Filters......Page 241
10.3.1 Lossless Case......Page 245
10.3.2 Loss Case......Page 249
10.4 Conclusions......Page 252
References......Page 253
11.1 Small Transmission-Line Impedance Transformers......Page 255
11.2 Mathematical Approach for CVTs and CCTs......Page 256
11.2.1 CVTs and CCTs......Page 257
11.2.2 Microstrip CVTs and CCTs......Page 262
11.2.3 Bounded Length of CVTs and CCTs......Page 263
11.2.4 Phase Responses of CVTs and CCTs......Page 266
11.3 CVT3PDs and CCT3PDs......Page 268
11.3.1 Isolation Circuits of CVT3PDs and CVT3PDs......Page 269
11.3.2 Design of CVT3PDs and CCT3PDs......Page 271
11.4 Asymmetric Three-Port 45° Power Divider Terminated in Arbitrary Impedances......Page 273
11.4.1 Asymmetric 45° Power Divider Terminated in 30 Ω, 60 Ω, and 50 Ω......Page 274
11.5 CVT and CCT Ring Filters......Page 276
11.5.1 Analyses of Ring Filters......Page 277
Exercises......Page 281
References......Page 282
Appendix A: Symbols and Abbreviations......Page 284
Appendix B: Conversion Matrices......Page 287
Appendix C: Derivation of the Elements of a Small Asymmetric Ring Hybrid......Page 291
Appendix D: Trigonometric Relations......Page 294
Appendix E: Hyperbolic Relations......Page 296
Index......Page 298