Aspects of Bounded Integral Operators in L^p Spaces

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): G.O. Okikiolu
Publisher: Academic Press
Year: 1971

Language: English
Pages: 529

Contents......Page all_23687_to_00529.cpc0004.djvu
Preface......Page all_23687_to_00529.cpc0002.djvu
1.1 Normed linear spaces......Page all_23687_to_00529.cpc0008.djvu
1.2 Examples of Banach spaces......Page all_23687_to_00529.cpc0010.djvu
1.3 Topology in normed linear spaces......Page all_23687_to_00529.cpc0016.djvu
1.4 Separable normed linear spaces......Page all_23687_to_00529.cpc0019.djvu
1.5 Compact sets: the Heine-Borel theorem......Page all_23687_to_00529.cpc0020.djvu
1.6 Baire's category theorem......Page all_23687_to_00529.cpc0022.djvu
1.7 Continuous mappings between normed linear spaces......Page all_23687_to_00529.cpc0023.djvu
1.8 Banach's fixed point theorem......Page all_23687_to_00529.cpc0029.djvu
1.9 Linear transformations in normed linear spaces......Page all_23687_to_00529.cpc0030.djvu
1.10 Extensions of linear mappings: the Hanh-Banach theorem......Page all_23687_to_00529.cpc0036.djvu
1.11 Adjoint mappings......Page all_23687_to_00529.cpc0040.djvu
1.12 Banach algebras......Page all_23687_to_00529.cpc0044.djvu
1.13 Inner product spaces and Hilbert spaces......Page all_23687_to_00529.cpc0051.djvu
1.14 Exercises to Chapter 1......Page all_23687_to_00529.cpc0065.djvu
2.1 Measures and measure spaces......Page all_23687_to_00529.cpc0076.djvu
2.2 Properties of outer measures, and the Lebesgue measure......Page all_23687_to_00529.cpc0078.djvu
2.3 Limit theorems for measures and outer measures......Page all_23687_to_00529.cpc0084.djvu
2.4 Measurable functions......Page all_23687_to_00529.cpc0086.djvu
2.5 Simple functions......Page all_23687_to_00529.cpc0091.djvu
2.6 Convergence theorems......Page all_23687_to_00529.cpc0093.djvu
2.7 The Lebesgue integral of simple functions......Page all_23687_to_00529.cpc0095.djvu
2.8 The Lebesgue integral of a bounded measurable function.......Page all_23687_to_00529.cpc0097.djvu
2.9 The Riemann and Lebesgue integrals on R^1......Page all_23687_to_00529.cpc0105.djvu
2.10 The bounded convergence theorem......Page all_23687_to_00529.cpc0107.djvu
2.11 Integrable functions......Page all_23687_to_00529.cpc0109.djvu
2.12 Distribution functions......Page all_23687_to_00529.cpc0111.djvu
2.13 Convergence theorems......Page all_23687_to_00529.cpc0113.djvu
2.14 Product spaces, product measures: Fubini's theorem......Page all_23687_to_00529.cpc0116.djvu
2.15 Radon-Nikodym theorem: change of variables, derivatives......Page all_23687_to_00529.cpc0122.djvu
2.16 Derivatives and integrals on the real line......Page all_23687_to_00529.cpc0132.djvu
2.17 Appendix to Chapter 2: change of variables in integrals over R^n......Page all_23687_to_00529.cpc0140.djvu
2.18 Exercises to Chapter 2......Page all_23687_to_00529.cpc0145.djvu
3.1 Introduction......Page all_23687_to_00529.cpc0159.djvu
3.2 Holder's inequality......Page all_23687_to_00529.cpc0160.djvu
3.3 Minkowski's inequality and Jensen's inequality......Page all_23687_to_00529.cpc0164.djvu
3.4 Completeness of L^p (X, \textcal{X}, m), p \geq 1 trigonometric series......Page all_23687_to_00529.cpc0168.djvu
3.5 Approximations in L^p(X)......Page all_23687_to_00529.cpc0170.djvu
3.6 Continuity of norm in L^p(R^n)......Page all_23687_to_00529.cpc0175.djvu
3.7 Representation of linear functionais in L^p(X): the adjoint operator......Page all_23687_to_00529.cpc0177.djvu
3.8 Isometries in L^p(X)......Page all_23687_to_00529.cpc0180.djvu
3.9 The pointwise convergence of classes of bounded operators on L^p(R^n)......Page all_23687_to_00529.cpc0186.djvu
3.10 Exercises to Chapter 3......Page all_23687_to_00529.cpc0189.djvu
4.1 A general inequality: Young's inequality for convolutions......Page all_23687_to_00529.cpc0197.djvu
4.2 Inequalities for homogeneous kernels......Page all_23687_to_00529.cpc0200.djvu
4.3 Convolutions and approximations to the identity......Page all_23687_to_00529.cpc0204.djvu
4.4 Operator approximations......Page all_23687_to_00529.cpc0210.djvu
4.5 Special integral operators......Page all_23687_to_00529.cpc0212.djvu
4.6 Exercises to Chapter 4......Page all_23687_to_00529.cpc0224.djvu
5.1 The Riesz-Thorin convexity theorem and extensions......Page all_23687_to_00529.cpc0237.djvu
5.2 Distributions functions and the Marcinkiewicz-Zygmund interpolation theorem......Page all_23687_to_00529.cpc0241.djvu
5.3 An extension of Young's inequality for generalized convolution......Page all_23687_to_00529.cpc0252.djvu
5.4 Non-increasing rearrangements......Page all_23687_to_00529.cpc0255.djvu
5.5 Lorentz spaces......Page all_23687_to_00529.cpc0261.djvu
5.6 Further results involving convolutions......Page all_23687_to_00529.cpc0265.djvu
5.7 Maximal functions......Page all_23687_to_00529.cpc0271.djvu
5.8 Weighted norms for operators mapping into L^\infty......Page all_23687_to_00529.cpc0279.djvu
5.9 Exercises to Chapter 5......Page all_23687_to_00529.cpc0281.djvu
6.1 Fourier transforms of functions in L^1(R^n)......Page all_23687_to_00529.cpc0299.djvu
6.2 Some special theorems: special functions and radial functions......Page all_23687_to_00529.cpc0303.djvu
6.3 Fourier transforms of functions in L^2(R^n)......Page all_23687_to_00529.cpc0311.djvu
6.4 Fourier transforms in L^p(R^n), 1 \geq p \geq 2......Page all_23687_to_00529.cpc0317.djvu
6.5 Fourier transforms with weight functions......Page all_23687_to_00529.cpc0320.djvu
6.6 Fourier transforms, fractional integrals and Bessel potentials......Page all_23687_to_00529.cpc0337.djvu
6.7 Operators with Fourier-type kernels: generalized transforms......Page all_23687_to_00529.cpc0341.djvu
6.8 Laplace transforms and Mellin transforms......Page all_23687_to_00529.cpc0351.djvu
6.9 Exercises to Chapter 6......Page all_23687_to_00529.cpc0355.djvu
7.1 Introduction to the Hilbert transform......Page all_23687_to_00529.cpc0368.djvu
7.2 The Hilbert transform in L^2(R)......Page all_23687_to_00529.cpc0372.djvu
7.3 Hilbert transforms and conjugate functions in L^p(R)......Page all_23687_to_00529.cpc0378.djvu
7.4 Fourier transform multipliers: Dirichlet projections......Page all_23687_to_00529.cpc0393.djvu
7.5 Estimates for singular integrals: An estimate for differentiable multipliers......Page all_23687_to_00529.cpc0407.djvu
7.6 Maximal functions for convolution operators......Page all_23687_to_00529.cpc0429.djvu
7.7 Exercises to Chapter 7......Page all_23687_to_00529.cpc0436.djvu
8.2 Equivalent functional relations: translation invariant operators......Page all_23687_to_00529.cpc0444.djvu
8.3 Vector-valued functions on measure spaces......Page all_23687_to_00529.cpc0451.djvu
8.4 Estimates for vector-valued singular integrals......Page all_23687_to_00529.cpc0462.djvu
8.5 Mixed-norm estimates for singular integrals......Page all_23687_to_00529.cpc0464.djvu
8.6 Semi-groups of operators......Page all_23687_to_00529.cpc0474.djvu
8.7 Examples of special semi-groups of operators on L^p(R^n)......Page all_23687_to_00529.cpc0490.djvu
8.8 Remarks on semi-group potential theory......Page all_23687_to_00529.cpc0494.djvu
8.9 Exercises to Chapter 8......Page all_23687_to_00529.cpc0495.djvu
Notation not defined in Text......Page all_23687_to_00529.cpc0509.djvu
Bibliography and References......Page all_23687_to_00529.cpc0511.djvu
Author Index......Page all_23687_to_00529.cpc0518.djvu
Subject Index......Page all_23687_to_00529.cpc0521.djvu