Artificial Intelligence: Reinforcement Learning in Python: Complete guide to artificial intelligence and machine learning, prep for deep reinforcement learning

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

When people talk about artificial intelligence, they usually don’t mean supervised and unsupervised machine learning. These tasks are pretty trivial compared to what we think of AIs doing - playing chess and Go, driving cars, and beating video games at a superhuman level. Reinforcement learning has recently become popular for doing all of that and more. Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn’t been until recently that we’ve been able to observe first hand the amazing results that are possible. In 2016 we saw AlphaGo beat the world Champion in Go. We saw AIs playing video games like Doom and Super Mario. Self-driving cars have started driving on real roads with other drivers and even carrying passengers, all without human assistance. If that sounds amazing, brace yourself for the future because the law of accelerating returns dictates that this progress is only going to continue to increase exponentially. Yet learning about supervised and unsupervised machine learning is no small feat. To date I have over 16 courses just on those topics alone. And still reinforcement learning opens up a whole new world. As you’ll learn in this book, the reinforcement learning paradigm is more different from supervised and unsupervised learning than they are from each other. It’s led to new and amazing insights both in behavioral psychology and neuroscience. As you’ll learn in this course, there are many analogous processes when it comes to teaching an agent and teaching an animal or even a human. It’s the closest thing we have so far to a true general artificial intelligence.

Author(s): LazyProgrammer
Publisher: LazyProgrammer
Year: 2017

Language: English
Pages: 211

Introduction
How to Succeed
What is Reinforcement Learning?
Where to get the Code
The Multi-Armed Bandit
Tic-Tac-Toe
Tic Tac Toe in Code
Markov Decision Processes
Dynamic Programming
Monte Carlo
Temporal Difference Learning
Function Approximation
Conclusion