Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein’s gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters — written by experts in general relativity, particle physics, and condensed matter physics — that explore various aspects of this two-way traffic.
Author(s): Grigori Volovik, Mario Novello, Matt Visser, G. E. Volovik
Edition: 1st
Publisher: World Scientific Publishing Company
Year: 2002
Language: English
Pages: 415
Contents......Page 16
Preface......Page 6
List of contributors......Page 8
Plan of the book......Page 12
1 Introduction and survey......Page 24
1.1 The notion of curved space......Page 26
1.2 Adding a dimension: curved spacetime......Page 29
1.3 Event horizons and ergoregions......Page 32
1.4 Physical models......Page 34
1.5 Kinematics versus dynamics......Page 36
1.6 Wave equation in the acoustic analogy......Page 38
1.7 Examples......Page 42
1.8 Hawking radiation?......Page 49
1.9 Horizon entropy?......Page 50
1.10 Summary......Page 51
2 Acoustic black holes in dilute Bose-Einstein condensates......Page 58
2.1 Introduction......Page 59
2.2 Sonic black holes in condensates......Page 61
2.3 Black/white holes in a ring......Page 63
2.4 Sink-generated black holes......Page 70
2.5 Quasiparticle pair creation......Page 76
2.6 Conclusions......Page 78
3.1 Motivation......Page 84
3.2 Light-matter interaction......Page 85
3.3 Ordinary media......Page 88
3.4 Electromagnetically-Induced Transparency......Page 92
3.5 Dark-state dynamics......Page 96
3.6 Slow-light pulses......Page 100
3.7 Effective field theory......Page 101
3.8 Moving media......Page 103
3.9 Summary......Page 105
4 Black hole and baby universe in a thin film of 3He-A......Page 110
4.1 Introduction and motivation......Page 111
4.2 Black hole analogues using 3He......Page 114
4.3 Effective spacetime and Hawking effect from a moving domain wall texture......Page 117
4.4 Black hole formation and evaporation in the thin-film domain-wall model\r......Page 122
4.5 Conclusion......Page 128
5 Measurability of dumb hole radiation?......Page 132
5.1 Introduction......Page 133
5.2 Hypersonic flow......Page 136
5.3 Roton creation......Page 141
5.4 Vorticity......Page 142
5.5 Density changes......Page 143
5.6 Slow light......Page 144
5.7 Conclusion......Page 145
6 Effective gravity and quantum vacuum in superfluids......Page 150
6.1 Introduction......Page 151
6.2 Einstein gravity and cosmological constant problem......Page 153
6.3 Microscopic 'Theory of Everything' in quantum liquids......Page 158
6.4 Weakly interacting Bose gas......Page 161
6.5 Quantum liquid......Page 171
6.6 Vacuum energy and cosmological constant......Page 175
6.7 Effects of discrete number N of particles in the vacuum......Page 186
6.8 Conclusion......Page 195
7 Emergent relativity and the physics of black hole horizons......Page 202
7.1 Introduction......Page 203
7.2 Horizons in Bose fluids......Page 206
7.3 Horizons in quantum magnets......Page 210
7.4 Quantum criticality......Page 213
7.5 Discussion......Page 216
8 Quasi-gravity in branes......Page 222
8.1 Introduction......Page 223
8.2 Equation of motion of brane worldsheet......Page 224
8.3 Perturbed worldsheet configuration......Page 225
8.4 Quasi-gravitational metric perturbations......Page 226
8.5 Jordan-Brans-Dicke type theories......Page 227
8.6 Linearised local scalar tensor field configurations......Page 229
8.7 Conclusion......Page 231
9 Towards a collective treatment of quantum gravitational interactions......Page 236
9.1 Outline......Page 237
9.2 Introduction......Page 239
9.3 The model......Page 244
9.4 The gravitational interactions between 0- and 0+......Page 247
9.5 Non-vacuum gravitational effects......Page 250
9.6 Modified Green function......Page 253
9.7 Conclusions......Page 259
9.8 Appendix: The large N limit......Page 260
10 Role of sonic metric in relativistic superfiuid......Page 268
10.1 Introduction......Page 269
10.2 Single constituent perfect fluid models......Page 270
10.3 Single constituent superfiuid models......Page 276
10.4 Landau-type two-constituent superfluid models......Page 280
11 Effective geometry in nonlinear field theory (Electrodynamics and Gravity)......Page 290
11.1 Introduction......Page 291
11.2 Nonlinear electrodynamics......Page 292
11.3 Nonlinear dielectric media......Page 302
11.4 Moving dielectrics......Page 304
11.5 Non-trivial quantum vacua......Page 312
11.6 Preliminary synthesis......Page 319
11.7 The case of spin 2 (gravity)......Page 321
11.8 Conclusions......Page 327
12 Non-inertial quantum mechanical fluctuations......Page 330
12.2 Vacuum Field Noise - VFN......Page 331
12.3 Circular electromagnetic vacuum noise......Page 342
12.4 Unruh effect versus anomalous Doppler effect......Page 349
12.5 Summary......Page 351
13 Phonons and forces: Momentum versus pseudomomentum in moving fluids\r......Page 358
13.1 Introduction......Page 359
13.2 Momentum and pseudomomentum......Page 360
13.3 Radiation pressure......Page 364
13.4 Mass flow and the Stokes drift......Page 368
13.5 The Unruh wave equation......Page 372
13.6 The acoustic metric......Page 373
13.7 Second-order quantities......Page 375
13.8 Conservation laws......Page 376
13.9 Phonons and conservation of wave action......Page 381
13.10 Summary......Page 384
14 Coda......Page 388
14.2 Effective metric techniques......Page 389
14.3 Analogue models for Einstein gravity......Page 396
14.4 Approximate Lorentz symmetry......Page 397
14.5 Last words......Page 398
Appendix: Elements of general relativity......Page 406
Index......Page 408