This book gives an applied introduction to exterior calculus for upper division undergraduates and beginning graduate students. Development is operational with an emphasis on computation proficiency and elementary geometric notions. Consideration is limited to local questions. The book also features fully worked out examples and problems with answers.
Author(s): Dominic G.B. Edelen
Edition: 1ST
Year: 1985
Language: English
Pages: 492
Contents......Page 11
Part One. Vectors and Forms......Page 17
1-1. Number Space, Points, and Coordinates......Page 18
1-2. Composition of Mappings......Page 20
1-3. Some Useful Theorems......Page 24
1-4. Systems of Autonomous First-Order Differential Equations......Page 27
1-5. Vector Spaces, Dual Spaces, and Algebras......Page 31
2-1. The Tangent to a Curve at a Point......Page 36
2-2. The Tangent Space T(E_n) and Vector Fields on E_n......Page 41
2-3. Operator Representations of Vector Fields......Page 44
2-4. Orbits......Page 49
2-5. Linear and Quasilinear First-Order Partial Differential Equations......Page 53
2-6. The Natural Lie Algebra of T(E_n)......Page 66
2-7. Lie Subalgebra of T(E_n) and Systems of Linear First-Order Partial Differential Equations......Page 71
2-8. Behavior under Mappings......Page 80
3-1. The Dual Space T^*(E_n)......Page 92
3-2. The Exterior or "Veck" Product......Page 98
3-3. Algebraic Results......Page 103
3-4. Inner Multiplication......Page 108
3-5. Top Down Generation of Bases......Page 115
3-6. Ideals of \Lambda(E_n)......Page 119
3-7. Behavior under Mappings......Page 124
4-1. The Exterior Derivative......Page 137
4-2. Closed Ideals and a Confluence of Ideas......Page 146
4-3. The Frobenius Theorem......Page 151
4-4. The Darboux Class of a 1-Form and the Darboux Theorem......Page 156
4-5. Finite Deformations and Lie Derivatives......Page 166
4-6. Ideals and Isovector Fields......Page 175
4-7. Integration of Exterior Forms, Stokes' Theorem, and the Divergence Theorem......Page 182
5-1. Perspective......Page 189
5-2. Starshaped Regions......Page 190
5-3. The Homotopy Operator H......Page 191
5-4. The Exact Part of a Form and the Vector Subspace of Exact Forms......Page 195
5-5. The Module of Antiexact Forms......Page 196
5-6. Representations......Page 199
5-7. Change of Center......Page 202
5-8. Behavior under Mappings......Page 204
5-9. An Introductory Problem......Page 206
5-10. Representations for 2-Forms That Are Not Closed......Page 212
5-11. Differential Systems of Degree k and Class r......Page 214
5-12. Integration of the Connection Equations......Page 217
5-13. The Attitude Matrix of a Differential System......Page 219
5-14. Integration of the Curvature Equations......Page 223
5-15. Integration of a Differential System......Page 225
5-16. Equivalent Differential Systems......Page 227
5-17. Horizontal and Vertical Ideals of a Distribution......Page 230
5-18. n-Forms and Integration......Page 236
5-19. The Adjoint of a Linear Operator on \Lambda(E_n)......Page 239
References for Further Study......Page 247
Part Two. Applications to Mathematics......Page 248
6-1. The Graph Space of Solutions to Partial Differential Equations......Page 249
6-2. Kinematic Space and the Contact 1-Forms......Page 251
6-3. The Contact Ideal and Its Isovectors......Page 252
6-4. Explicit Characterization of TC(K)......Page 257
6-5. Second-Order Partial Differential Equations and Balance Forms......Page 262
6-6. Isovectors of the Balance Ideal and Generation of Solutions......Page 265
6-7. Examples......Page 267
6-8. Similarity Variables and Similarity Solutions......Page 279
6-9. Inverse Isovector Methods......Page 285
6-10. Dimension Reduction in the Calculation of Isovectors......Page 291
6-11. Contact Forms of Higher Order......Page 295
7-1. Formulation of the Problem......Page 301
7-2. Finite Variations, Stationarity, and the Euler-Lagrange Equations......Page 306
7-3. Properties of Euler-Lagrange Forms and Stationarizing Maps......Page 313
7-4. Noetherian Vector Fields and Their Associated Currents......Page 319
7-5. Boundary Conditions and the Null Class......Page 325
7-6. Problems with Boundary Integrals and Differential Constraints......Page 332
References for Further Study......Page 340
Part Three. Applications to Physics......Page 342
8-1. Formulation of the Problem......Page 343
8-2. The Work Function for Thermostatically Conservative Forces......Page 345
8-3. Internal Energy, Heat Addition, and Irreversibility......Page 348
8-4. Homogeneous Systems with Internal Degrees of Freedom......Page 355
8-5. Homogeneous Systems with Nonconservative Forces......Page 361
8-6. Nonequilibrium Thermodynamics......Page 367
8-7. Reformulation as a Well Posed Mathematical Problem......Page 369
9-1. The Four-Dimensional Base Space......Page 373
9-2. Electrodynamics with Free Magnetic Charge and Current......Page 377
9-3. General Solutions of Maxwell's Equations......Page 379
9-4. The Ray Operator and Explicit Representations......Page 381
9-5. Properties of the Field Equations and Their Solutions......Page 384
9-6. Constitutive Relations and Wave Properties......Page 389
9-7. Variational Formulation of the Field Equations......Page 394
9-8. Field Induced Momentum and Force Densities......Page 398
10-1. The Origin of Gauge Theories......Page 406
10-2. The Minimal Replacement Construct......Page 408
10-4. Gauge Connection 1-Forms and the Gauge Covariant Exterior Derivative......Page 411
10-5. Gauge Covariant Differentiation of Group Associated Quantities......Page 417
10-6. Derivation of the Field Equations......Page 423
10-7. Transformation Properties and Gauge Covariance......Page 428
10-8. Integrability Conditions and Current Conservation......Page 430
10-9. Gauge Group Orbits and the Antiexact Gauge......Page 434
10-10. Direct Integration of the Field Equations......Page 437
10-11. Momentum-Energy Complexes and Interaction Forces......Page 441
10-12. General Symmetry Groups of the Action n-Form......Page 444
10-13. Operator-Valued Connection 1-Forms......Page 446
10-14. Properties of D and Operator-Valued Curvature Forms......Page 449
10-15. Lie Connections......Page 452
10-16. The Minimal Replacement Construct......Page 454
10-17. Variations and the Field Equations......Page 460
10-18. Gauge Theory for the Poincare Group......Page 466
References for Further Study......Page 471
Appendix......Page 473
Index......Page 476