Many embedded engineers and programmers who need to implement basic process or motion control as part of a product design do not have formal training or experience in control system theory. Although some projects require advanced and very sophisticated control systems expertise, the majority of embedded control problems can be solved without resorting to heavy math and complicated control theory. However, existing texts on the subject are highly mathematical and theoretical and do not offer practical examples for embedded designers. This book is different;it presents mathematical background with sufficient rigor for an engineering text, but it concentrates on providing practical application examples that can be used to design working systems, without needing to fully understand the math and high-level theory operating behind the scenes. The author, an engineer with many years of experience in the application of control system theory to embedded designs, offers a concise presentation of the basics of control theory as it pertains to an embedded environment. * Practical, down-to-earth guide teaches engineers to apply practical control theorems without needing to employ rigorous math * Covers the latest concepts in control systems with embedded digital controllers * The accompanying CD-ROM contains source code and real-world application examples to help users create fully working systems
Author(s): Tim Wescott
Series: Embedded technology series
Publisher: Newnes
Year: 2006
Language: English
Commentary: 62613
Pages: 321
City: Burlington, MA
front cover......Page 1
copyright......Page 5
table of contents......Page 8
Preface......Page 12
What’s on the CD-ROM?......Page 14
1.1 Control Systems......Page 16
1.2 Anatomy of a Control System......Page 17
1.3 Closed Loop Control......Page 19
1.4 Controllers......Page 21
1.5 About This Book......Page 23
2 Z Transforms......Page 26
2.1 Signals and Systems......Page 27
2.2 Difference Equations......Page 30
2.3 The Z Transform......Page 33
2.4 The Inverse Z Transform......Page 34
2.5 Some Z Transform Properties......Page 40
2.6 Transfer Functions......Page 45
2.7 Stability in the Z Domain......Page 49
2.8 Frequency Response......Page 52
2.9 Conclusion......Page 56
3.1 Tracking......Page 58
3.2 Frequency Response......Page 70
3.3 Disturbance Rejection......Page 76
3.4 Conclusion......Page 78
4.1 The Language of Blocks......Page 80
4.2 Analyzing Systems with Block Diagrams......Page 89
4.3 Conclusion......Page 108
5 Analysis......Page 110
5.1 Root Locus......Page 111
5.2 Bode Plots......Page 122
5.3 Nyquist Plots......Page 128
5.4 Conclusion......Page 139
6.1 Controllers, Filters and Compensators......Page 140
6.2 Compensation Topologies......Page 141
6.3 Types of Compensators......Page 143
6.4 Design Flow......Page 162
6.5 Conclusion......Page 163
7.1 Sampling......Page 164
7.2 Aliasing......Page 166
7.3 Reconstruction......Page 168
7.4 Orthogonal Signals and Power......Page 171
7.5 Random Noise......Page 172
7.6 Nonideal Sampling......Page 174
7.7 The Laplace Transform......Page 185
7.8 z Domain Models......Page 190
7.9 Conclusion......Page 197
8 Nonlinear Systems......Page 198
8.1 Characteristics of Nonlinear Systems......Page 199
8.2 Some Nonlinearities......Page 202
8.3 Linear Approximation......Page 208
8.4 Nonlinear Compensators......Page 214
8.5 Conclusion......Page 238
9.1 Overview......Page 240
9.2 Measuring in Isolation......Page 241
9.3 In-Loop Measurement......Page 244
9.4 Real-World Issues......Page 249
9.5 Software......Page 253
9.6 Other Methods......Page 260
10.1 Data Types......Page 262
10.2 Quantization......Page 265
10.3 Overflow......Page 277
10.4 Resource Issues......Page 279
10.5 Implementation Examples......Page 283
10.6 Conclusion......Page 307
11.1 Tools......Page 308
11.2 Bibliography......Page 310
About the Author......Page 312
Index......Page 314
CD-ROM License Agreement......Page 320