Applied and Computational Complex Analysis: Special Functions, Integral Transforms, Asymptotics, Continued Fractions

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

At a mathematical level accessible to the non-specialist, the third of a three-volume work shows how to use methods of complex analysis in applied mathematics and computation. The book examines two-dimensional potential theory and the construction of conformal maps for simply and multiply connected regions. In addition, it provides an introduction to the theory of Cauchy integrals and their applications in potential theory, and presents an elementary and self-contained account of de Branges' recently discovered proof of the Bieberbach conjecture in the theory of univalent functions. The proof offers some interesting applications of material that appeared in volumes 1 and 2 of this work. It discusses topics never before published in a text, such as numerical evaluation of Hilbert transform, symbolic integration to solve Poisson's equation, and osculation methods for numerical conformal mapping.

Author(s): Peter Henrici
Publisher: John Wiley & Sons Inc
Year: 1977

Language: English
Pages: 672