Applications in Design and Simulation of Sustainable Chemical Processes addresses the challenging applications in designing eco-friendly but efficient chemical processes, including recent advances in chemistry and catalysis that rely on renewable raw materials. Grounded in the fundamental knowledge of chemistry, thermodynamics, chemical reaction engineering and unit operations, this book is an indispensable resource for developing and designing innovating chemical processes by employing computer simulations as an efficient conceptual tool.
Targeted to graduate and post graduate students in chemical engineering, as well as to professionals, the book aims to advance their skills in process innovation and conceptual design. The work completes the book Integrated Design and Simulation of Chemical Processes by Elsevier (2014) authored by the same team.
Author(s): Dimian A., Bildea C., Kiss A.
Edition: 1st
Publisher: Elsevier Science
Year: 2019
Language: English
Pages: 729
Cover......Page 1
APPLICATIONS INDESIGN AND SIMULATION OF SUSTAINABLE CHEMICAL PROCESSES......Page 2
Copyright......Page 3
PREFACE......Page 4
Part I: Systematic Methods in Conceptual Process Design
......Page 11
1 - Sustainable Process Technology......Page 12
1.1 Introduction......Page 13
1.2 Sustainable Development......Page 14
1.3 Renewable Versus Fossil Raw Materials......Page 16
1.3.1 Biomass......Page 17
1.4 Biorefinery Concept......Page 20
1.5 Chemicals From Biomass......Page 23
1.5.1 Chemicals From C1 Biobuilding Blocks......Page 24
1.5.2 Chemicals From C2 Biobuilding Blocks......Page 25
1.5.3 Chemicals From C3 Biobuilding Blocks......Page 26
1.5.4 Chemicals From C4 Biobuilding Blocks......Page 27
1.5.5 Chemicals From C5 Biobuilding Blocks......Page 28
1.5.6 Chemicals From C6 Biobuilding Blocks......Page 30
1.5.7 Other Chemical Products Obtained From Biomass......Page 31
1.6.1 Economic Significance......Page 32
1.6.2 Sustainability Issues......Page 34
1.6.3 Biodiesel......Page 37
1.6.4 Bioethanol......Page 38
1.6.5 Other Biofuels......Page 39
1.7 Biopolymers......Page 40
1.8.2 Feedstock Pretreatment......Page 41
1.8.4 Separation Processes......Page 43
1.8.5 Process Intensification......Page 44
1.9 Economic Challenges......Page 45
1.10 Conclusions......Page 47
References......Page 48
16.1 Introduction......Page 644
2.1 Process Synthesis by Hierarchical Approach......Page 53
2.2.2 Plant and Site Data......Page 55
9.6.3 Liquid-Liquid Separations......Page 342
2.2.4.1 Products and Raw Materials......Page 56
2.2.5 Technology Review and Research Papers......Page 57
2.3.1.3 Catalyst......Page 58
3.4.1 Reactor Types......Page 119
10.3.2 Intensified Separations Using Dividing-Wall Column Technology......Page 380
7.8.3 Synthesis of Aminoundecanoic Acid......Page 276
2.3.5.2 Phase Equilibrium......Page 60
11.4.5 Plantwide Control......Page 61
2.4.2 Overall Material Balance......Page 63
2.4.3 Health, Safety and Environment Analysis......Page 64
2.4.4 Economic Potential......Page 65
2.5.1 Material Balance Envelope......Page 68
2.5.1.1 Excess of Reactant......Page 70
2.5.2.1 Inventory of Components and Makeup Strategies......Page 71
2.5.2.2 Snowball Effects......Page 72
2.5.2.5 Control of Selectivity......Page 73
2.5.3.1 Reactors for Homogeneous Systems......Page 74
2.5.4.2 Equilibrium Limitations......Page 75
2.5.4.3 Heat Integrated Reactors......Page 76
2.6.1 Superstructure of Separations......Page 77
2.6.2 Methods for the First Phase Split......Page 78
2.6.3 Methodology for Sequencing of Separations......Page 81
2.6.4.2 Split Sequencing......Page 84
2.6.5 Liquid Separation System......Page 87
2.6.5.1 Separation Methods......Page 88
2.6.5.2 Split Sequencing......Page 89
2.7.1.1 Sequence of Separations......Page 91
2.7.1.2 Complex Distillation Columns......Page 92
2.7.1.3 Sequence Optimization......Page 93
2.7.2.1 Homogeneous Azeotropic Distillation......Page 94
2.7.2.2 Heterogeneous Azeotropic Distillation......Page 96
2.7.3.1 Pressure Swing Distillation......Page 97
2.7.3.2 Extractive Distillation......Page 98
2.7.4 Hybrid Separations......Page 99
2.9 Energy Integration......Page 100
2.11 Process Control System......Page 101
2.13 Process Simulation Issues......Page 102
References......Page 104
Part II: Commodity Chemicals
......Page 106
3.1 Introduction......Page 107
3.2 Renewable Versus Fossil Raw Materials......Page 111
7.6.1 Physical Properties......Page 261
10.3 Conventional DME Process......Page 112
3.3.2 Chemical Equilibrium......Page 113
3.3.3 Catalysts and Kinetics......Page 114
16.4 Conclusions......Page 672
3.4.2 Process Technologies......Page 122
6.4.1 Pseudo-Homogeneous Reactor Model......Page 129
3.5.2 Process Simulation......Page 130
3.5.3 Reactor Design......Page 131
3.5.4 Design of the Separation Section......Page 133
3.6 Methanol Synthesis by CO2 Hydrogenation......Page 134
3.6.1 Process Design and Simulation......Page 135
Subscript......Page 144
References......Page 145
Appendix......Page 147
4 -
Methanol-To-Olefin Process......Page 152
4.1 Introduction......Page 153
4.2.2 Chemistry and Catalysis......Page 154
4.2.3 Thermodynamics and Kinetics......Page 155
4.2.4 Physical Properties......Page 156
13.8.1 Types of Reactors......Page 157
15.3.2 Reaction – Separation – Recycle Processes......Page 160
4.4.1 Reactor Design......Page 161
4.5.1 Energy Saving Analysis Around Chemical Reactor......Page 163
4.5.2 Preliminary Separation Section......Page 165
4.5.3 Olefins Separation Section......Page 168
4.6.1 Gas Compressors......Page 171
4.6.2 Feed-Effluent Heat Exchangers......Page 172
4.6.3 Utility-Driven Heat Exchangers......Page 176
4.6.4 Separation Columns......Page 177
References......Page 179
4.7.2 Refrigeration System......Page 180
4.7.4 Thermal Coupling and Utility Consumption......Page 181
13.8 Reaction Section......Page 494
14.9 Process Integration......Page 183
4.10 Conclusions......Page 185
References......Page 186
5.1 Introduction......Page 188
5.2 Olefin Metathesis......Page 189
5.3 FCC Unit and Downstream Processing......Page 193
5.4.1 Process Chemistry......Page 196
5.4.2 Kinetics......Page 197
5.4.3 Thermodynamics......Page 198
5.5 Identification of Flowsheet Alternatives......Page 199
5.5.1 Flowsheets with Recycle (US1)......Page 200
5.5.2 Flowsheets without Recycle (US2)......Page 201
5.6 Economic Evaluation of Process Alternatives......Page 202
7.8.1 Pyrolysis Reaction Section......Page 203
5.6.3 Separation Section......Page 204
5.7.1 Flowsheets with Recycle......Page 205
7.9.2 Utility System......Page 282
5.8.2 Column Sizing......Page 211
5.8.4 Unit Summary Cost......Page 214
5.9 Conclusions......Page 215
References......Page 216
Appendix......Page 217
7 - Castor Oil Biorefinery......Page 221
6.2.1 Catalytic Condensation Process......Page 223
6.2.2 NExOCTANE Process......Page 224
6.2.3 Recent Research Activities......Page 226
6.3.1 Feed Mixture......Page 228
6.3.2 Chemistry and Kinetics......Page 229
6.3.3 Physical Properties and Thermodynamics......Page 231
16.3.2 Kinetics......Page 666
6.4 Reactor Model......Page 235
16.3.4 DMC Synthesis Process......Page 669
6.5.1 Process Description......Page 239
6.5.2 Sensitivity Studies......Page 243
6.5.3 Comparison with Reactive Distillation Processes......Page 246
List of Notation......Page 250
Abbreviations......Page 251
References......Page 252
Part III: Renewable Fuels and Biochemicals
......Page 253
7.1 Introduction......Page 254
7.2 Castor Oil Biorefinery......Page 256
8.4 Biobutanol......Page 259
7.5 Health, Safety, and Environmental Issues......Page 260
7.6.2 Phase Equilibrium......Page 262
7.6.3 Kinetics......Page 264
14.4.1 Components......Page 345
7.7.1 Transesterification Technologies......Page 266
7.7.2 Continuous Transesterification Process by Homogeneous Base Catalysis......Page 267
7.8 Synthesis of ω-Aminoundecanoic Acid......Page 271
7.8.2 Separation of Methyl Undecylenoate......Page 273
7.9.1 Energy Saving by Mechanical Vapor Compression......Page 281
7.10 Suggestions for Complementary Projects......Page 284
References......Page 285
12 - Styrene Manufacturing......Page 441
8.1 Introduction......Page 288
8.3 Bioethanol......Page 290
8.3.1 Pretreatment......Page 291
8.3.2 Hydrolysis......Page 292
8.3.3 Fermentation......Page 293
8.3.4 Downstream Processing......Page 296
8.4.1 Butanol Manufacturing......Page 307
8.4.2 Pretreatment Process......Page 309
8.4.3 Acetone–Butanol–Ethanol Process......Page 310
8.4.4 Acetone–Butanol–Ethanol Recovery......Page 311
8.4.5 Downstream Processing......Page 313
8.4.5.1 Decanter-Distillation Process......Page 316
8.4.5.2 Heat-Integrated Distillation (DWC) Process......Page 319
8.4.5.3 Azeotropic Distillation in a Dividing-wall column......Page 320
8.4.5.4 Hybrid Separation: Distillation + Extraction......Page 325
8.5 Conclusions......Page 327
References......Page 328
11 -
Fuel Additives......Page 331
11.2 Glycerol Etherification With Isobutene......Page 401
9.3 Biodiesel Specifications......Page 334
9.4 Feedstock for Biodiesel......Page 337
9.5 Manufacturing Technologies......Page 339
9.6.1 Feedstock Pretreatment......Page 341
9.7.2 Thermodynamics......Page 346
9.7.3 Kinetics......Page 347
9.8 Biodiesel Process From Rapeseed Oil by Heterogeneous Catalysis......Page 348
9.9 Biodiesel Process From Waste Cooking Oil......Page 353
9.9.1 Free Fatty Acids Reduction......Page 354
9.9.2 Transesterification......Page 356
9.11 Conclusions......Page 360
References......Page 361
10.1 Introduction......Page 364
10.1.1 Dimethyl Ether as Sustainable Fuel......Page 365
10.2 Physical Properties, Chemical Equilibrium, and Kinetics......Page 367
10.2.2 Chemical Equilibrium......Page 369
17.4.2 Process Configurations......Page 370
10.3.1 Process Design and Optimization......Page 372
10.4 Novel Process Intensification Alternatives......Page 385
10.5 Catalytic Distillation Process......Page 386
10.6 Combined Gas-phase Reactor and Reactive Distillation Process......Page 392
10.7 Conclusions......Page 396
References......Page 397
11.2.1.2 Physical Properties......Page 403
11.2.1.3 Reaction Kinetics......Page 405
11.2.3 Process Design......Page 407
11.3 Glycerol Etherification With Tert-butanol......Page 409
11.3.1.1 Reaction Stoichiometry and Kinetics......Page 410
11.3.1.3 Vapor Liquid Equilibrium......Page 412
11.3.2.1 Plant Flowsheet......Page 414
11.3.2.2 Dynamics and Control......Page 417
11.3.3.1 Reactive Distillation Design......Page 419
11.3.3.2 Dynamics and Control......Page 421
11.4 Glycerol Ketalization......Page 423
11.4.1 Basis of Design......Page 424
11.4.2 Conceptual Design......Page 425
11.4.3 Design of the Chemical Reactor......Page 426
11.4.4 Design of the Separation Section......Page 427
11.5 Glycerol Acetalization......Page 431
11.5.1 Basis of Design......Page 432
11.5.2 Chemical Reaction......Page 433
11.5.3 Conceptual Design......Page 434
11.5.4 Reactor Design......Page 435
11.5.5 Separation Section......Page 436
12.9.4 Vessels and Storage......Page 437
11.6 Concluding Remarks......Page 438
12.2.1 Project Definition......Page 442
12.2.2 Chemistry......Page 443
12.2.4.2 Safety, Storage and Transportation Issues......Page 444
12.2.5.2 Styrene - Propylene Oxide Process......Page 445
12.2.5.3 Styrene from butadiene......Page 446
12.2.5.4 Styrene from Toluene and Methanol......Page 447
12.3.2 Phase Equilibria......Page 448
12.3.3 Chemical Kinetics Data......Page 450
12.4.1 Preliminary Material Balance......Page 454
12.4.2 Environmental Issues......Page 455
12.5.1.1 Adiabatic Reactor......Page 456
12.5.1.2 Adiabatic Reactors with Oxidative Dehydrogenation......Page 457
12.5.2 Development of Alternatives for the Reaction Section......Page 458
12.6 Separation System......Page 465
12.7 Process Integration......Page 468
12.8 Process Performance......Page 471
12.9 Economic Analysis......Page 473
12.9.5 Separation Section......Page 475
12.10 Conclusions......Page 476
Part IV: Industrial Chemicals
......Page 480
17 -
Polyesters......Page 518
13.1 Introduction......Page 481
13.2.1 Rhodium Catalyzed Carbonylation......Page 483
13.2.2 Iridium Catalyzed Carbonylation......Page 486
13.2.3 Heterogeneous Catalyst......Page 487
13.3 Chemical Equilibrium......Page 488
13.4 Kinetic Aspects......Page 489
13.5.1 Acetic Acid......Page 491
13.6 Health, Safety and Environment......Page 493
13.8.2 Simulation of the Reaction System......Page 495
15.3.3 Reactive Distillation Process......Page 498
13.9 Separation Section......Page 499
13.10.1 Integration of Reaction and Separation Sections......Page 504
13.10.2 Heat Pump Assisted Distillation......Page 505
13.11 Economic Evaluation......Page 507
13.12 Sustainability Analysis......Page 511
13.13 Conclusions......Page 516
References......Page 517
14.2.1 Propylene Route......Page 519
14.2.2 Glycerol Route......Page 521
14.2.3 Catalyst for Glycerol Dehydration to Acrolein......Page 523
14.2.4 Using Low-Cost Glycerol......Page 524
14.3 Kinetic Aspects......Page 525
14.4 Physical Properties......Page 527
14.5 Health, Safety, and Environment......Page 528
14.6 Input/Output Analysis......Page 529
14.7.1 Reactors for Glycerol Dehydration to Acrolein......Page 531
14.7.2 Reactors for Acrolein Oxidation......Page 534
14.7.3 Simulation of the Reaction Section......Page 535
14.7.4.1.1 Bubbling Fluidized Bed Reactor......Page 538
14.7.4.1.2 Circulating Fluidized Bed Reactor......Page 540
14.7.4.1.3 Circulating Turbulent Fluidized Bed Reactor......Page 541
14.7.4.2 Oxidation Reaction......Page 542
14.8 Separation Section......Page 543
14.8.1 Water Removal by Azeotropic Distillation......Page 545
14.8.2 Water Removal by Liquid–Liquid Extraction......Page 547
14.10.1 Capital Cost Estimation......Page 552
14.10.3 Production Costs......Page 556
14.11 Sustainability Analysis......Page 559
14.13 Conclusions......Page 562
References......Page 564
15 . ACRYLIC MONOMERS......Page 567
15.2 2-Ethylhexyl Acrylate......Page 568
15.2.1.1 Reaction Kinetics......Page 569
15.2.1.2.3 Phase Equilibria......Page 570
15.2.2.1 System Structure......Page 572
15.2.2.2 Sensitivity Analyses......Page 573
15.2.2.4 RSR-A......Page 576
15.2.2.5 RSR-B......Page 585
15.2.2.6 RSR-C......Page 588
17.3.3 Reactive Distillation Model......Page 686
15.2.3.1 Feasible Operating Window and Process Synthesis......Page 593
15.2.3.2 Equilibrium-Based Design......Page 594
15.2.3.3 Rate-Based Design......Page 598
15.2.3.5 Process Control......Page 602
15.2.4.1 Economics Basis......Page 607
15.2.5 Conclusions......Page 611
15.3 n-Butyl Acrylate......Page 612
15.3.1.1 Reaction Kinetics......Page 613
15.3.1.2 Thermodynamics......Page 614
15.3.2.1 Reactor Design......Page 617
15.3.2.2 Design of the Separation System......Page 618
15.3.2.3 Economic Evaluation......Page 620
15.3.3.1 Feasible Operating Window of Reactive Distillation......Page 623
15.3.3.2 Process Description and Mass Balance......Page 624
15.3.3.3 Column Design......Page 626
15.3.3.4 Equipment Sizing......Page 628
15.3.3.5 Plantwide Control......Page 629
15.3.3.6 Economic Evaluation......Page 636
15.3.4 Published Data on Solid-Based Catalytic Processes......Page 638
15.3.5 Conclusions......Page 639
15.4 Concluding Remarks......Page 640
References......Page 641
16.2 Direct Conversion of CO2 to Dimethyl Carbonate......Page 647
16.2.1 Process Design......Page 648
16.2.2.2 Membrane Reactor......Page 650
16.2.2.4 Flash Recovery and Predistillation Column (Dist-01)......Page 654
16.2.2.5 Extractive Distillation (Dist-02) and Solvent Recovery (Dist-03)......Page 656
16.2.3 Process Performance Evaluation......Page 657
16.2.4 Economic Evaluation......Page 660
16.2.5 Key Performance Indicators......Page 663
16.3 DMC Synthesis by Propylene Carbonate Transesterification......Page 664
16.3.1 Thermodynamics......Page 665
16.3.3 PC Synthesis Process......Page 667
16.3.5 Key Performance Indicators......Page 671
References......Page 673
17.1 Introduction......Page 676
17.2 Technology Aspects......Page 681
17.3.1 Process Chemistry and Kinetics......Page 683
17.4.1 Selection of Internal Configurations......Page 693
17.4.3 Comparison of Internals Configurations......Page 699
17.4.4 Feed Configurations......Page 701
17.4.4.1 Multi-Product Operation......Page 703
17.5 Process Comparison......Page 707
List of Notation......Page 709
Superscripts......Page 710
References......Page 711
Index......Page 713
Back Cover......Page 729