There is nothing wrong with or incorrect about this book. The problem is that the information could be presented much more effectively and in fact is elsewhere!
If you're interested in and committed to doing some semi-rigorous math in the adaptive dynamics framework, then this book would probably be a pretty good investment. However, if you're a biologist of any kind (including theoretical biologists) there are better places to learn about adaptive dynamics. I recommend the following as places to start:
(this one for the basic, general nuts and bolts of the theory)
Diekmann O. 2004. A beginner's guide to adaptive dynamics. Banach Center Publications n. 63, 47-86, Banach Intl. Mathematical Cntr., Warsaw, Poland.
(these for additional mathematical detail and evolutionary implications)
Dieckmann U, Marrow U, Law R. 1995. J. Theor. Biol. 176, 91-102.
Dieckmann U, Law R. 1996. J. Math. Biol. 34, 579-612.
(and for even more biological applications and implications...)
Dieckmann U, et al. 2000. "The Geometry of Ecological Interactions." Cambridge.
Dieckmann U, et al. 2004. "Adaptive Speciation." Cambridge.
Ferriere R, et al. 2004. "Evolutionary Conservation Biology." Cambridge.
Most of the chapters comprising this book are watered down versions of papers these authors and others have already published in journals. And frankly, some of those papers are not exactly seminal works in the field. One example is chapter 4, which presents an application of the theory to economics that appeared in the journal "Technovation" (yeah I know, who the heck has ever heard of that?!). An economist friend of mine thought the chapter was laughable in terms of its relevance to anything in the economic world whatsoever.
Save your money and go make copies of the relevant literature at your local university's library.
Author(s): Fabio Dercole, Sergio Rinaldi
Series: Princeton Series in Theoretical and Computational Biology
Edition: illustrated edition
Publisher: Princeton University Press
Year: 2008
Language: English
Pages: 352
Contents......Page 8
Preface......Page 12
1.1 Origins of Evolutionary Theory......Page 20
1.2 Genotypes and Phenotypes......Page 24
1.3 Mutations......Page 28
1.4 Selection......Page 29
1.5 Evolution......Page 32
1.6 The Red Queen Hypothesis......Page 35
1.7 The Emergence of Diversity......Page 36
1.8 Evolutionary Extinction......Page 40
1.9 Examples......Page 43
2.1 Overview......Page 62
2.2 Population Genetics......Page 66
2.3 Individual-based Evolutionary Models......Page 72
2.4 Quantitative Genetics......Page 74
2.5 Evolutionary Game Theory......Page 78
2.6 Replicator Dynamics......Page 81
2.7 Fitness Landscapes......Page 83
2.8 Adaptive Dynamics......Page 86
2.9 A Comparative Analysis......Page 89
3.1 The Evolving Community......Page 93
3.2 The Resident-Mutant Model......Page 95
3.3 The Example of Resource-Consumer Communities......Page 98
3.4 Does Invasion Imply Substitution?......Page 102
3.5 The AD Canonical Equation......Page 107
3.6 Evolutionary State Portraits......Page 114
3.7 Evolutionary Branching......Page 118
3.8 The Role of Bifurcation Analysis......Page 129
3.9 What Should We Expect from the AD Canonical Equation......Page 135
4.1 Introduction......Page 138
4.2 A Market Model and Its AD Canonical Equation......Page 140
4.3 A Simple Example of Technological Branching......Page 148
4.4 Discussion and Conclusions......Page 154
5.1 Introduction......Page 157
5.2 A Model of Resource-Consumer Coevolution......Page 158
5.3 The Catalog of Evolutionary Scenarios......Page 163
5.4 Discussion and Conclusions......Page 170
6.1 Introduction......Page 172
6.2 A Model for the Evolution of Cooperation......Page 173
6.3 Catastrophic Disappearance of Evolutionary Attractors......Page 178
6.4 Evolutionary Branching and the Origin of Cheaters......Page 185
6.5 Discussion and Conclusions......Page 188
7.1 Introduction......Page 191
7.2 A Model of Cannibalistic Demographic Interactions......Page 193
7.3 Coevolution of Dwarfs and Giants......Page 196
7.4 The Branching-Extinction Evolutionary Cycle......Page 201
7.5 Discussion and Conclusions......Page 202
8.1 Introduction......Page 205
8.2 Biological Background......Page 207
8.3 Asymmetric Competition and the Occurrence of Evolutionary Reversals......Page 208
8.4 Slow-Fast Approximation of the AD Canonical Equation......Page 214
8.5 Discussion and Conclusions......Page 219
9.1 Introduction......Page 223
9.2 Biological Background......Page 226
9.3 The AD Canonical Equation for General Demographic Attractors......Page 228
9.4 Evolutionary Sliding and Pseudo-equilibria......Page 240
9.5 Results and Discussion......Page 243
9.6 Concluding Remarks......Page 248
10.1 Introduction......Page 250
10.2 A Tritrophic Food Chain Model and Its AD Canonical Equation......Page 252
10.3 The Chaotic Evolutionary Attractor......Page 254
10.4 Feigenbaum Cascade of Period-doubling Bifurcations......Page 257
10.5 Discussion and Conclusions......Page 260
A.1 Dynamical Systems and State Portraits......Page 262
A.2 Structural Stability......Page 267
A.3 Bifurcations as Collisions......Page 269
A.4 Local Bifurcations......Page 271
A.5 Global Bifurcations......Page 278
A.6 Catastrophes, Hysteresis, and Cusp......Page 280
A.7 Extinction Bifurcations......Page 284
A.8 Numerical Methods and Software Packages......Page 286
Appendix B. The Invasion Implies Substitution Theorem......Page 291
Appendix C. The Probability of Escaping Accidental Extinction......Page 296
Appendix D. The Branching Conditions......Page 300
Bibliography......Page 306
B......Page 344
D......Page 345
E......Page 346
F......Page 347
I......Page 348
M......Page 349
R......Page 350
S......Page 351
W......Page 352