Analysis and Design of Energy Geostructures: Theoretical Essentials and Practical Application

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Urban systems present an enormous demand for innovative solutions to meet human activity needs. In many situations, these needs require built environments and are associated with substantial amounts of energy requirements. While it is a critical chal- lenge to develop buildings and infrastructures whose energy requirements are sup- plied with a limited impact on the environment, employing renewable energy sources is essential for this purpose. So-called energy geostructures represent a break- through multifunctional technology for the sustainable development of present and future urban systems. A substantial amount of renewable geothermal energy is readily available in the ground. Geostructures, including foundations and general earth-contact structures, are essential means for the structural support of built environments through the ground. By leveraging the previous concepts, energy geostructures represent integrated earth- contact structures and thermal energy carriers for all built environments. Energy geos- tructures particularly explicate a multifunctional role for buildings and infrastructures: reinforce soils and rocks for their structural support and, at the same time, extract or store thermal energy from or in the subsurface for the supply of their heating and cooling energy requirements.

Author(s): Lyesse Laloui, Alessandro Rotta Loria
Edition: 1
Publisher: Academic Press
Year: 2019

Language: English
Pages: 1082

Cover......Page 1
Analysis and Design of Energy Geostructures: Theoretical Essentials and Practical
Application
......Page 3
Copyright......Page 4
Contents......Page 5
Preface......Page 11
List of symbols......Page 14
Part A: Introduction
......Page 33
1.1 Introduction......Page 34
1.2.2 Energy forms and classification of energy sources......Page 35
1.2.3 World energy consumption and supply......Page 36
1.2.4 Consequences......Page 39
1.2.5 Perspectives......Page 41
1.3.1 General......Page 42
1.3.2 Geothermal gradient......Page 43
1.3.3 Features of geothermal energy......Page 44
1.4.2 Features and use of geothermal systems......Page 45
References......Page 49
Statements......Page 51
Solutions......Page 52
2.1 Introduction......Page 55
2.2.1 Roles of energy geostructures......Page 56
2.2.2 Materials and technology......Page 58
2.2.4 Pipe locations......Page 61
2.2.5 Advantages involved with energy geostructures......Page 64
2.3.2 Heat exchange operation......Page 65
2.4.1 General......Page 66
2.4.2 The primary circuit......Page 67
2.4.3 The heat pump or reversed heat pump......Page 69
2.4.4 The secondary circuit......Page 70
2.4.5 The coefficient of performance......Page 71
2.4.7 Possible applications of ground source heat pump systems......Page 72
2.5.1 General......Page 73
2.6.1 Historical facts......Page 74
2.6.2 Application and development examples based on a literature survey......Page 75
2.6.3 The energy pile foundation of the Dock Midfield at the Zürich Airport......Page 76
2.6.4 The Stuttgart-Fasanenhof and the Jenbach energy tunnels......Page 83
2.6.5 The energy walls of the Taborstraße station......Page 85
2.7.1 General......Page 86
2.7.2 Governing and constitutive equations......Page 88
2.7.4 Problems of interest......Page 89
References......Page 90
Statements......Page 92
Solutions......Page 93
Part B: Fundamentals
......Page 96
3.1 Introduction......Page 97
3.2 Idealisations and assumptions......Page 98
3.3 Principles of heat transfer......Page 100
3.4.1 Physical phenomenon and governing equation......Page 102
3.4.2 Thermal conductivity values......Page 103
3.4.3 Remarks about conduction......Page 108
3.5.1 Physical phenomenon and governing equation......Page 114
3.5.2 Convection heat transfer coefficient values......Page 117
3.5.3 Remarks about convection......Page 118
3.6.1 Physical phenomenon and governing equation......Page 120
3.6.3 Remarks about radiation......Page 122
3.7.2 Fourier heat conduction equation......Page 123
3.7.3 Fourier heat conduction equation for no volumetric thermal energy generation......Page 124
3.7.5 Energy conservation equation......Page 125
3.7.6 Typical values of volumetric heat capacity......Page 126
3.8.2 Prescribed surface temperature......Page 128
3.8.3 Prescribed heat input......Page 129
3.8.4 Convection boundary condition......Page 130
3.8.5 Radiation boundary condition......Page 131
3.8.6 Interface boundary condition......Page 132
3.9 Principles of mass transfer......Page 133
3.10 Laminar and turbulent flows......Page 134
3.11.1 Physical phenomenon and governing equation......Page 136
3.11.2 Typical values of hydraulic conductivity and forced convection coefficient......Page 137
3.12.2 Mass conservation equation......Page 141
3.13 Initial and boundary conditions for mass conservation......Page 142
3.14 Boundary layers in flow problems......Page 143
3.15.2 Navier–Stokes equations......Page 145
References......Page 146
Statements......Page 149
Solutions......Page 153
4.1 Introduction......Page 164
4.2 Idealisations and assumptions......Page 165
4.3.1 Concepts of deformation and strain......Page 167
4.3.2 Strain–displacement relations......Page 168
4.3.3 Volumetric and deviatoric strains......Page 170
4.4 Compatibility equations......Page 171
4.5.1 Concepts of strength and stress......Page 172
4.5.2 Volumetric and deviatoric stresses......Page 175
4.5.3 Principal stresses......Page 176
4.6.2 Indefinite equilibrium equations......Page 180
4.7.1 General......Page 182
4.7.3 Displacement boundary conditions......Page 183
4.9.1 Perfect thermoelasticity......Page 184
4.9.2 Thermoelastic stress–strain relations......Page 185
4.9.3 Separation of stresses caused by mechanical and thermal loads......Page 188
4.9.4 Three-dimensional thermoelastic modelling......Page 189
4.9.5 Two-dimensional thermoelastic modelling......Page 190
4.9.6 One-dimensional thermoelastic modelling......Page 194
4.10.1 Yield criterion......Page 198
4.10.3 Flow rule......Page 199
4.10.4 Perfect plasticity......Page 201
4.10.5 Hardening plasticity......Page 202
4.10.6 Critical state plasticity......Page 207
4.10.7 Multisurface and bounding surface plasticity......Page 210
4.10.8 Thermoelastoplastic stress–strain relations......Page 211
4.10.9 Three-dimensional thermoelastic, plastic or thermoelastic, thermoplastic modelling......Page 213
References......Page 214
Statements......Page 217
Solutions......Page 220
Part C: Observations
......Page 233
5.1 Introduction......Page 234
5.2 Idealisations and assumptions......Page 235
5.3.1 Mineralogy and textural organisation of soils......Page 236
5.3.3 Preconsolidation stress......Page 238
5.3.5 Relative density......Page 239
5.4.2 Volumetric behaviour of fine-grained soils caused by one thermal cycle......Page 240
5.4.3 Volumetric behaviour of fine-grained soils for multiple thermal cycles......Page 245
5.4.4 Volumetric behaviour of coarse-grained soils caused by one thermal cycle......Page 249
5.4.5 Volumetric behaviour of coarse-grained soils for multiple thermal cycles......Page 252
5.4.6 Micromechanics of the volumetric behaviour of soils under nonisothermal conditions......Page 253
5.4.7 Considerations for analysis and design of energy geostructures......Page 255
5.5.1 Yield surface at different temperatures......Page 257
5.5.2 Shear strength......Page 258
5.5.3 Flow rule......Page 260
5.6.2 Temperature effect on compressibility parameters......Page 261
5.6.3 Temperature effect on angle of shear strength under constant volume conditions......Page 264
5.6.5 Temperature effect on consolidation parameters......Page 266
5.7.1 General......Page 269
5.7.2 Structure roughness......Page 270
5.7.4 Constant normal stiffness conditions......Page 273
5.7.5 Shearing and sliding of soil–structure interfaces......Page 276
5.8.1 Strength of sand–concrete interfaces......Page 277
5.8.2 Strength of clay–concrete interfaces......Page 280
5.9 Thermally induced effects on soil–concrete interface properties......Page 282
References......Page 283
Statements......Page 289
Solutions......Page 291
6.1 Introduction......Page 295
6.2 Idealisations and assumptions......Page 296
6.3 Classification of single energy piles......Page 297
6.4 Temperature variations......Page 298
6.5 Thermally induced vertical strain variations......Page 299
6.6 Thermally induced radial strain variations......Page 301
6.7 Thermally and mechanically induced vertical displacement variations......Page 303
6.8 Thermally and mechanically induced shear stress variations......Page 306
6.9 Thermally and mechanically induced vertical stress variations......Page 311
6.10 Degree of freedom variations......Page 314
References......Page 315
Statements......Page 318
Solutions......Page 319
7.1 Introduction......Page 323
7.3 Classification of energy pile foundations......Page 324
7.4 Temperature variations......Page 325
7.5 Pore water pressure variations......Page 328
7.6 Thermally induced vertical strain variations......Page 330
7.7 Thermally induced stress variations......Page 334
7.8 Effect of number of loaded energy piles on the vertical strain variations......Page 337
7.9 Effect of number of loaded energy piles on the vertical stress variations......Page 339
7.10 Key aspects governing the behaviour of energy pile foundations......Page 343
References......Page 347
Statements......Page 349
Solutions......Page 351
Part D: Analysis
......Page 355
8.1 Introduction......Page 356
8.2 Idealisations and assumptions......Page 357
8.3.1 Thermal and hydrodynamic entrance and fully developed regions in pipes......Page 361
8.3.2 Mean fluid velocity and temperature......Page 365
8.3.3 Velocity, pressure gradient, friction factor and temperature in the fully developed region......Page 367
8.3.4 The energy balance and the mean temperature in pipes......Page 370
8.3.5 Relevant coefficients for the heat and mass transfer analysis in pipes......Page 372
8.4 Thermal resistance concept for time-independent solutions......Page 377
8.5.1 General......Page 379
8.5.2 One-dimensional solutions for heat transfer without internal energy generation......Page 382
8.5.3 Two- and three-dimensional solutions for heat transfer......Page 384
8.5.4 One-dimensional solutions for heat transfer with internal energy generation......Page 387
8.6.2 One-dimensional solutions for heat transfer without internal energy generation......Page 389
8.6.3 Solutions for heat transfer with internal energy generation......Page 391
8.7.1 Application of thermal circuits to basic cylindrical and plane problems......Page 393
8.7.3 Application of thermal circuits to complex cylindrical and plane problems......Page 395
8.8.1 Heat transfer capacity of energy piles......Page 397
8.8.2 Heat storage capacity of energy piles......Page 399
8.9 Required thermally active dimension of energy geostructures......Page 400
8.10 The effectiveness-NTU analysis method for energy geostructures......Page 402
References......Page 403
Statements......Page 406
Solutions......Page 414
9.1 Introduction......Page 432
9.2 Idealisations and assumptions......Page 433
9.3.1 General......Page 434
9.3.2 The lumped capacitance method......Page 435
9.3.3 Solution of the Fourier heat conduction equation......Page 438
9.4 Thermal resistance concept for time-dependent solutions......Page 440
9.5 Duhamel’s theorem......Page 442
9.6.1 General......Page 445
9.6.2 Infinite cylindrical surface source model......Page 446
9.6.3 Infinite line source model......Page 448
9.6.4 Finite line source model......Page 449
9.6.5 Infinite moving line source model......Page 451
9.6.6 Other analytical models......Page 452
9.6.7 Other analysis approaches......Page 453
9.7.1 General......Page 454
9.7.2 Semiinfinite medium source model......Page 455
9.7.3 Periodic source model for a semiinfinite medium......Page 456
9.8 Heat transfer at short-to-medium timescales......Page 459
References......Page 461
Statements......Page 464
Solutions......Page 468
10.1 Introduction......Page 480
10.2 Idealisations and assumptions......Page 481
10.3 Generalised axial capacity formulation......Page 484
10.4.2 Displacement piles......Page 487
10.4.3 Nondisplacement piles......Page 494
10.5.1 General......Page 496
10.5.2 Displacement piles......Page 501
10.5.3 Nondisplacement piles......Page 502
10.6.1 General......Page 503
10.6.2 Shaft capacity......Page 504
10.7 Generalised axial deformation formulation......Page 505
10.8.1 General......Page 508
10.8.2 Energy piles with no base and head restraints......Page 509
10.8.3 Energy piles with base or head restraints......Page 511
10.8.4 Energy piles with base and head restraints......Page 513
10.9.1 General......Page 515
10.9.2 Charts for mechanical loads......Page 518
10.9.3 Charts for thermal loads......Page 521
10.10.1 Background......Page 522
10.10.2 Load-displacement relationships......Page 526
10.10.3 Solution for mechanical loading only......Page 531
10.10.4 Solution for thermal loading only......Page 533
10.10.5 Solution for mechanical and thermal loading......Page 536
10.11.2 Tests by Briaud et al. (1989)......Page 537
10.11.3 Tests by O’Neill et al. (1981)......Page 541
10.11.4 Tests by Mandolini and Viggiani (1992)......Page 544
10.11.5 Tests by Mimouni and Laloui (2015)......Page 548
10.11.6 Tests by Rotta Loria and Laloui (2017b)......Page 552
References......Page 554
Statements......Page 561
Solutions......Page 568
11.1 Introduction......Page 589
11.2 Idealisations and assumptions......Page 590
11.3 Generalised axial capacity formulation......Page 591
11.5 Capacity in fine-grained soil......Page 593
11.6 Generalised axial deformation formulation......Page 594
11.7.1 Background......Page 596
11.7.2 Hypotheses and considerations......Page 597
11.7.3 The interaction factor concept......Page 598
11.7.4 Peculiarities of the displacement interaction caused by mechanical and thermal loads......Page 603
11.7.5 Basic analysis procedure......Page 606
11.7.6.1 Effect of pile spacing, pile slenderness ratio and pile–soil stiffness ratio – piles embedded in uniform soil mass......Page 608
11.7.6.2 Effect of pile spacing, pile slenderness ratio and pile–soil stiffness ratio – piles resting on infinitely rigid s.........Page 609
11.7.6.3 Effect of pile slenderness ratio, pile–soil stiffness ratio and base-to-shaft modulus ratio – piles resting on fin.........Page 611
11.7.6.4 Effect of finite layer depth......Page 613
11.7.7.1 Effect of pile spacing, pile slenderness ratio and pile–soil stiffness ratio – piles embedded in uniform soil mass......Page 614
11.7.7.2 Effect of pile spacing, pile slenderness ratio and pile–soil stiffness ratio – piles resting on infinitely rigid s.........Page 615
11.7.7.3 Effect of pile slenderness ratio, pile–soil stiffness ratio and base-to-shaft modulus ratio – piles resting on fin.........Page 617
11.7.7.5 Effect of finite layer depth......Page 619
11.7.7.7 Effect of soil–pile thermal expansion coefficient ratio......Page 620
11.7.8 Modified analysis procedure......Page 621
11.8.2 Hypotheses and considerations......Page 623
11.8.3 Basic analysis procedure......Page 624
11.8.4.1 Soil vertical displacement and approximate pile–soil interaction factor......Page 626
11.8.4.2 Receiver pile vertical displacement and corrected pile–soil–pile interaction factor......Page 628
11.8.5.1 Soil vertical displacement and approximate pile–soil interaction factor......Page 631
11.8.5.2 Receiver pile vertical displacement and corrected pile–soil–pile interaction factor......Page 633
11.8.6 Effect of nonlinear soil deformation on energy pile interaction......Page 634
11.8.7 Modified analysis procedure......Page 635
11.9.1 Background......Page 636
11.9.2 Hypotheses and considerations......Page 638
11.9.4 Geometry of the equivalent pier......Page 639
11.9.5 Homogenised material properties of the equivalent pier......Page 641
11.9.6 Load–displacement description of the equivalent pier......Page 645
11.10.1.1 General......Page 648
11.10.1.2 Maximum average vertical head displacement......Page 649
11.10.1.4 Maximum differential vertical head displacement......Page 651
11.10.1.5 Illustrative example......Page 652
11.10.1.6 Analysis of 2×2, 3×3, 4×4 and 5×5 square energy pile groups......Page 654
11.10.2.2 Analysis of vertical displacement of a single isolated pile......Page 657
11.10.2.3 Analysis of corrected interaction factor......Page 658
11.10.2.4 Corrected interaction factor for a range of design situations......Page 659
11.10.2.5 Analysis of 5×5 square energy pile groups......Page 661
11.10.3.1 General......Page 664
11.10.3.2 Analysis of 2×2, 3×3, 4×4 and 5×5 square energy pile groups......Page 665
11.11.1.2 Tests by O’Neill et al. (1981)......Page 666
11.11.1.4 Effect on nonlinear soil deformation on the response of mechanically loaded piles......Page 667
11.11.2.1 General......Page 670
11.11.2.2 Tests by Briaud et al. (1989)......Page 671
11.11.2.3 Tests by O’Neill et al. (1981)......Page 674
11.11.2.4 Tests by Mandolini and Viggiani (1992)......Page 676
11.11.2.5 Tests by Rotta Loria and Laloui (2018)......Page 680
References......Page 684
Statements......Page 688
Solutions......Page 694
12.1 Introduction......Page 703
12.2 Idealisations and assumptions......Page 704
12.3.2 Influence of the pipe configuration......Page 710
12.3.3 Influence of the pile slenderness ratio......Page 715
12.3.4 Influence of the heat carrier fluid flow rate......Page 719
12.3.4.1 Pipe diameter variation......Page 723
12.3.4.2 Flow velocity variation......Page 725
12.3.5 Influence of the heat carrier fluid composition......Page 728
12.3.6 Influence of the soil–pile thermal expansion coefficient ratio......Page 729
12.3.7 Influence of loading magnitude and sequence......Page 735
12.4.2 Influence of tunnel shape......Page 736
12.4.3 Influence of airflow regime within the tunnel......Page 739
12.4.4 Influence of surface wall roughness......Page 741
12.4.5 Influence of pipe configuration......Page 744
12.4.6 Influence of pipe embedment......Page 745
12.4.7 Influence of heat carrier fluid flow rate......Page 746
12.4.8 Influence of groundwater flow......Page 749
12.5.2 Influence of pipe configuration......Page 752
12.5.3 Influence of surface wall thermal condition......Page 754
12.5.4 Influence of soil–wall thermal conductivity ratio......Page 756
12.5.5 Influence of soil–wall thermal expansion coefficient ratio......Page 757
12.5.6 Influence of groundwater flow......Page 758
References......Page 759
Statements......Page 764
Solutions......Page 766
Part E: Design
......Page 770
13.1 Introduction......Page 771
13.2 Holistic integrated design considerations......Page 772
13.3 Available design recommendations......Page 776
13.4 The Eurocode programme......Page 777
13.5 Limit states......Page 779
13.7 Classification of actions......Page 780
13.8.2 Actions and effects of actions......Page 782
13.8.3 Material properties and resulting resistances......Page 785
13.8.4 Verification......Page 787
13.10 Combination of actions at ultimate limit states......Page 788
13.11 Combination of actions at serviceability limit states......Page 792
13.12.2 Concrete......Page 796
13.12.3 Reinforcing steel......Page 801
13.13 Structural and geotechnical analysis......Page 803
13.14.1 General......Page 804
13.14.2.1 Problem statement......Page 805
13.14.2.2 Strain and strength domains......Page 807
13.14.2.4 Design of doubly reinforced cross sections......Page 810
13.14.3.1 Problem statement......Page 811
13.14.3.2 Design of members not requiring design shear reinforcement......Page 812
13.14.3.3 Design of members requiring design shear reinforcement......Page 813
13.14.4.2 Basic control perimeter......Page 815
13.14.4.3 Definition of design shear force......Page 816
13.14.4.4 Design of members not requiring design shear reinforcement......Page 818
13.14.4.5 Design of members requiring design shear reinforcement......Page 819
13.15.2.2 Compressive stress limitation......Page 821
13.15.2.4 Procedure for stress check at serviceability limit states......Page 822
13.15.3.1 Problem statement......Page 823
13.15.3.2 Principles of cracking phenomena......Page 824
13.15.3.3 Minimum areas of reinforcement......Page 826
13.15.3.4 Control of cracking without direct calculation......Page 827
13.15.3.5 Control of cracking with direct calculation......Page 828
13.15.4.1 Problem statement......Page 829
13.15.4.2 Control of deflections......Page 830
References......Page 832
Statements......Page 835
Solutions......Page 836
14.1 Introduction......Page 840
14.2 Characterisation of sites......Page 841
14.4 Testing methods......Page 843
14.5.3 Testing procedure......Page 850
14.5.4.1 Heat transfer and contact thermal resistance......Page 853
14.5.5 Effective thermal conductivity determination......Page 854
14.5.6 Comparison with other methods......Page 855
14.6.2 Testing equipment......Page 857
14.6.3 Testing procedure......Page 860
14.6.4.1 General considerations......Page 862
14.6.4.4 Porous discs......Page 863
14.6.5 Compressibility parameters determination......Page 864
14.6.6 Preconsolidation pressure and overconsolidation ratio determination......Page 867
14.6.7 Volumetric thermal expansion coefficient determination......Page 868
14.6.8 Consolidation parameters determination......Page 870
14.7.2 Testing equipment......Page 871
14.7.3 Testing procedure......Page 875
14.7.4 Testing recommendations......Page 876
14.7.4.1 Specimen features and preparation......Page 877
14.7.4.3 Physical contact and porous disks......Page 878
14.7.4.7 Saturation......Page 879
14.7.5 Pair of elastic parameters determination......Page 880
14.7.6 Volumetric thermal expansion coefficient determination......Page 881
14.7.7 Shear strength parameters determination......Page 882
14.8.2 Testing equipment......Page 883
14.8.3 Testing procedure......Page 886
14.8.4.2 Specimen size......Page 889
14.8.4.6 Shearing......Page 890
14.8.5 Determination of shear strength parameters......Page 891
14.9.2 Testing equipment......Page 895
14.9.3 Testing procedure......Page 896
14.9.4 Testing recommendations......Page 898
14.9.4.3 Geothermal heat exchanger features......Page 899
14.9.4.5 Thermal loading duration......Page 900
14.9.5 Initial ground temperature determination......Page 901
14.9.6 Effective thermal conductivity and time-independent thermal resistance determination......Page 902
14.9.7 Analysis of paired values of λsoil and R′ghe......Page 905
14.10.1 General......Page 906
14.10.2 Testing equipment......Page 908
14.10.3 Strain and temperature determination along energy geostructures......Page 911
14.10.4 Stress determination in energy geostructures......Page 915
14.10.5 Pore water pressure and temperature determination in the ground......Page 916
References......Page 917
Statements......Page 924
Solutions......Page 933
15.1 Introduction......Page 952
15.2.1 General......Page 953
15.2.2 Relevant limit states......Page 954
15.3.2 Design criteria......Page 955
15.3.3 Geotechnical arguments......Page 956
15.3.4 Structural arguments......Page 958
15.3.5 Typical design problems......Page 959
15.4.1 General......Page 961
15.4.2 Calculation of the design acting load......Page 963
15.4.3 Calculation of the design ground resisting load......Page 964
15.4.3.1 Calculation from static load test......Page 965
15.4.3.3 Calculation from soil shear strength parameters......Page 966
15.5.1 General......Page 967
15.5.2 Vertical displacement, deflection and angular distortion control......Page 968
15.5.4 Concrete cover and reinforcement areas......Page 971
References......Page 972
Statements......Page 975
Solutions......Page 980
16.1 Introduction......Page 1022
16.2 Pipe features and bending......Page 1023
16.3 Pipe fixing to reinforcing cages......Page 1024
16.4 Energy geostructure installation......Page 1028
16.5 Piping network and connections......Page 1032
16.6 Quality control......Page 1034
References......Page 1037
Statements......Page 1038
Solutions......Page 1039
A.2 Questionnaire......Page 1042
B.2.1 General......Page 1044
B.2.2 Mass conservation equation......Page 1046
B.2.3 Equilibrium equation......Page 1048
B.3.2 Mass conservation equation......Page 1049
B.3.4 Energy conservation equation......Page 1050
References......Page 1051
C.2 Stress–strain behaviour and elastic relations......Page 1052
C.3 Yield surface and potential function – monotonic loading......Page 1053
C.4 Hardening rule......Page 1056
C.5 Generalised stress–strain relation......Page 1057
C.6 Yield surface – cyclic loading......Page 1058
Further reading......Page 1061
Index......Page 1062
Back Cover......Page 1082