Analog and Digital Electronic Circuits: Fundamentals, Analysis, and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book introduces the foundations and fundamentals of electronic circuits. It broadly covers the subjects of circuit analysis, as well as analog and digital electronics. It features discussion of essential theorems required for simplifying complex circuits and illustrates their applications under different conditions. Also, in view of the emerging potential of Laplace transform method for solving electrical networks, a full chapter is devoted to the topic in the book. In addition, it covers the physics and technical aspects of semiconductor diodes and transistors, as well as discrete-time digital signals, logic gates, and combinational logic circuits. Each chapter is presented as complete as possible, without the reader having to refer to any other book or supplementary material.

Featuring short self-assessment questions distributed throughout, along with a large number of solved examples, supporting illustrations, and chapter-end problems and solutions, this book is ideal for any physics undergraduate lecture course on electronic circuits. Its use of clear language and many real-world examples make it an especially accessible book for students unfamiliar or unsure about the subject matter.

Author(s): R. Prasad
Series: Undergraduate Lecture Notes in Physics
Publisher: Springer
Year: 2021

Language: English
Pages: 983
City: Cham

Preface
Acknowledgements
Contents
Circuit Analyses
1 Electrical Network Theorems and Their Applications
Abstract
1.1 Objective
1.2 Some Definitions
1.3 Circuit Analysis
1.4 Network Theorems
1.4.1 Superposition Theorem
1.4.2 Thevenin’s Theorem
1.4.3 Norton’s Theorem
1.4.4 Theorem of Maximum Power Transfer
1.4.5 Reciprocity or Reciprocality Theorem
1.4.6 Compensation Theorem
1.4.7 Millman’s Theorem
1.4.8 Equivalent Generator Theorem
1.4.9 Nodal–Mesh Transformation or Rosen’s Theorem
1.5 Tellegen Theorem
2 Circuit Analyses Using the Laplace Transform
Abstract
2.1 Introduction
2.2 Laplace Transform
2.2.1 Laplace Transform for an Exponential Function
2.2.2 Laplace Transform for Function f(t) = tn
2.2.3 Laplace Transforms for Cosine and Sine Functions
2.2.4 Inverse Laplace Transform and Properties of Transform and Inverse Transforms
2.2.5 Tables of Laplace and Inverse Laplace Transforms
2.2.6 Solution of Ordinary Differential Equations Using Laplace Transforms
2.2.7 Partial Fractions
2.2.8 Convolution Theorem
2.3 Application of Laplace Transformation Technique for Circuit Analysis
2.3.1 Transformation of the Circuit from Time Domain to s Domain
2.4 Some Special Functions of t Domain and Their Equivalents in s Domain
3 First- and Second-Order Circuits, Phasor and Fourier Analysis
Abstract
3.1 Introduction
3.2 First- and Second-Order Circuits
3.2.1 Analysis of First-Order Circuits
3.3 Second-Order Circuits
3.4 Phasor Representation of Electrical Quantities
3.4.1 Representation of a Sinusoidal Variable by a Phasor
3.4.2 Representing a Phasor in Polar, Cartesian and Complex Number Forms
3.4.3 Representing Non-phasor Electrical Quantities by Complex Number
3.5 Fourier Analysis
3.5.1 Expanding Periodic Function in Sinusoidal Series
3.5.2 Expanding Periodic Function in Fourier Exponential Series
3.5.3 Fourier Transform and Inverse Transform
3.5.4 3.5.4 Properties of Fourier Transform
3.5.5 Real, Imaginary, Even and Odd Functions and Fourier Transforms
3.5.6 Rectangular Pulse Function and Periodic Function
Analog Electronics
4 Electrical Properties of Materials
Abstract
4.1 Introduction
4.2 Electrical Properties and Classification of Materials
4.3 Physics of Resistivity: Electron Band Theory of Solids
4.3.1 Valence and Conduction Bands
4.3.2 Fermi Level or Fermi Energy
4.4 Conductors
4.4.1 Metallic Bonding
4.4.2 Half Metals and Semimetals (Metalloids)
4.5 Insulators
4.6 Semiconductors
4.6.1 Covalent Bond Picture
4.6.2 Extrinsic or Doped Semiconductors
4.6.3 Compensated Semiconductors
4.6.4 Mass Action Law
4.6.5 Non-degenerate and Degenerate Semiconductors
4.6.6 Effective Mass of Electron and Crystal Momentum
4.6.7 Theoretical Calculation of Carrier Density in a Semiconductor
4.6.8 Positioning of Fermi Level
4.6.9 Energy Band Diagram of Doped Semiconductor
4.6.10 Compound Semiconductors
4.6.11 Current Flow in Semiconductors
4.6.12 Operation of Semiconductor Under High Field
4.6.13 Hall Effect
5 p-n Junction Diode: A Basic Non-linear Device
Abstract
5.1 Introduction
5.2 p-n Junction in Thermal Equilibrium
5.2.1 Extension of Depletion Layer on Two Sides of the Junction
5.2.2 Position of Fermi Level for a p-n Junction in Thermal Equilibrium
5.2.3 Built-In Potential Vbi
5.3 Highly Doped Abrupt p-n Junction in Thermal Equilibrium
5.3.1 p-i-n Junction
5.4 Biased p-n Junction in Thermal Equilibrium
5.4.1 Forward Bias
5.4.2 Reverse Bias
5.5 Ideal Diode
5.5.1 Transfer Characteristic of a Real Diode
5.6 Some Applications of Diode
5.6.1 Half-Wave Rectifier
5.6.2 Full-Wave Rectifier
5.6.3 Three-Phase Rectifiers
5.6.4 Ripple Filters or Smoothing Circuits
5.7 Some Other Applications of Diodes
5.7.1 Voltage Multiplier
5.7.2 Diodes as Logic Gates
5.7.3 Envelop Detector
5.7.4 Limiting or Clipping Circuits
5.7.5 Clamper Circuits Using Diode
5.8 Some Special Diodes
5.8.1 Light-Emitting Diode (LED)
5.8.2 Photodiode
5.8.3 Laser Diode
5.8.4 Schottky Diode
6 Transistor Bipolar Junction (BJT) and Field-Effect (FET) Transistor
Abstract
6.1 Introduction
6.2 Types and General Construction of BJT
6.3 Working of a BJT
6.4 Discrete BJT, Packaging, Type and Testing
6.5 Current–Voltage Characteristics of a BJT
6.6 Modes of Operation of a BJT
6.7 BJT Configurations and Parameters
6.7.1 Common Base Configuration
6.7.2 Common Emitter Configuration
6.7.3 Common Collector Configuration
6.7.4 Class of Operation of Amplifiers
6.8 BJT Biasing Using Single Battery VCC
6.8.1 DC Load Line
6.8.2 Stability of Q-Point
6.8.3 Different Schemes of Biasing and Their Stabilities
6.9 BJT Modelling and Equivalent Circuit: Small-Signal Model
6.9.1 Small-Signal r-Parameter Transistor Model
6.9.2 Small-Signal Transconductance or Hybrid-pi Model for CE Configuration
6.9.3 Small-Signal Hybrid Model
6.9.4 Analysis of a BJT Amplifier Using Hybrid Parameters
6.10 General Approach to the Analysis of BJT Amplifier
6.11 Ebers–Moll Model for BJT
6.11.1 Modes of Operation
6.12 Summary of BJT Amplifiers
6.12.1 Common Emitter
6.12.2 Common Collector
6.12.3 Common Base
6.13 Gain in dB, Low-Pass and High-Pass Filters and Frequency Response
6.13.1 Gain in dB
6.13.2 High-Pass and Low-pass Filters
6.13.3 Frequency Response of a Single-Stage BJT Amplifier
6.13.4 BJT as a Switch
6.14 Field-Effect Transistor (FET)
6.14.1 Junction Field-Effect Transistor (JFET)
6.14.2 Metal–Semiconductor Field-Effect Transistor (MESFET)
6.14.3 Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET)
6.14.4 MOSFET Amplifier
6.14.5 MOSFET as Switch
7 Feedback in Amplifiers
Abstract
7.1 Introduction
7.1.1 Negative Feedback in Amplifiers
7.2 Classification of Amplifiers
7.2.1 Voltage–Voltage Amplifier or Voltage Amplifier
7.2.2 Voltage–Current or Transconductance Amplifier (VCT)
7.2.3 Current–Current Amplifier (CCT)
7.2.4 Current–Voltage or Transresistance Amplifier (CVT)
7.3 Sampling and Mixing of Signals
7.3.1 Sampling
7.3.2 Mixing
7.4 Sampling and Mixing Topologies (Configurations)
7.4.1 Effects of Negative Feedback on Amplifier Properties
7.4.2 Reduction in Overall Gain
7.4.3 Desensitization of Overall Amplifier Gain
7.4.4 Increase in the Bandwidth of the Amplifier
7.4.5 Reduction in Amplifier Noise
7.4.6 Reduction in Non-Linear Distortion:
7.4.7 Change in the Input and the Output Impedance of the Amplifier
7.5 Problem-Solving Technique for Feedback Amplifiers
7.5.1 y-Parameter Equivalent
7.5.2 z-Parameters Equivalent
7.5.3 h-Parameters Equivalent
7.5.4 g-Parameter Equivalent
7.5.5 To Resolve a Voltage Feedback Amplifier in A- and β-Circuits
7.5.6 To Resolve a Current Controlled Current Feedback Amplifier in A- and β-Circuits
7.5.7 To Resolve a Transconductance Feedback Amplifier in A- and β-circuits
7.5.8 To Resolve a Transresistance Feedback Amplifier in A- and β-Circuits
7.6 Oscillators
7.6.1 Positive Feedback in Amplifiers
7.6.2 Transfer Function, Zeros and Poles
7.6.3 Positive Feedback Oscillator
8 Operational Amplifier
Abstract
8.1 Introduction
8.1.1 Differential Amplifier
8.2 Working of Operational Amplifier
8.2.1 Feeding DC Power to the Op-Amp
8.2.2 Common-Mode and Differential-Mode Signals
8.2.3 Slew Rate
8.2.4 Common-Mode Rejection Ratio (CMRR)
8.2.5 Bandwidth and Gain-Bandwidth Product
8.2.6 Output Offset Voltage
8.3 Ideal Op-Amp
8.4 Practical Op-Amp with Negative Feedback
8.4.1 Negative Feedback Configurations
8.5 Frequency Dependence of the Gain for An Op-Amp
8.6 Some Important Applications of Op-Amp
8.6.1 Voltage Follower
8.6.2 Op-Amp as Constant Current Generator
8.6.3 Voltage Adder
8.6.4 Voltage Adder and Subtractor
8.6.5 Op-Amp as a Differentiator
8.6.6 Op-Amp as Integrator
8.6.7 Op-Amp Operated Precision Full-Wave Rectifier or Absolute Value Circuit
8.6.8 Op-Amp Operated RC-Phase Shift Oscillator
8.6.9 Op-Amp-Operated Active Filters
Digital Electronics
9 Electronic Signals and Logic Gates
Abstract
9.1 Electronic Signals
9.1.1 Discrete Time Electronic Signal
9.1.2 Signal Transmission
9.1.3 Analog to Digital and Digital to Analog Conversion
9.2 Numeral Systems
9.2.1 Decimal Number System
9.2.2 Binary Number System
9.3 Octal and Hexadecimal Numbers
9.3.1 Octal System
9.3.2 Hexadecimal (or Hex) Number System
9.3.3 Binary Coded Decimal Number (BCD)
9.3.4 Alphanumeric Codes
9.4 Logic Statement, Truth Table, Boolean Algebra and Logic Gates
9.5 Elements of Boolean Algebra and Logic Gates
9.5.1 Logic Gate AND
9.5.2 Logic Gate OR
9.5.3 Logic Gate NOT
9.5.4 Logic Gate NAND
9.5.5 Logic Gate NOR
9.6 Laws of Boolean Algebra
9.7 Logic Gate Exclusive OR (XOR)
9.8 Logic Exclusive NOR or NXOR Gate
9.9 Classification of Logic Technology
9.10 Voltage Levels for the Two Logic States
9.11 Solving Problems Based on Logic Gates
9.11.1 Simplifying Boolean Expression or Algebraic Simplification
9.11.2 Karnaugh Map Technique
10 Some Applications of Logic Gates
Abstract
10.1 Introduction
10.2 Half Adder
10.3 Full Adder
10.3.1 Negative Numbers
10.3.2 One’s Complement of a Number
10.3.3 Two’s Complement of a Number
10.3.4 Subtraction of Binary Number Using ‘Two’s Complement’
10.4 Sequential Logic Circuits: Latches and Flip-Flops
10.4.1 S-R Latch
10.4.2 Gated Latch or Latch with Enable
10.4.3 D (Data)-Latch or Transparent Latch
10.4.4 Signal Transmission Time of Logic Gate and Glitch
10.5 Flip-Flops: The Edge Triggered Latch
10.5.1 Working of an Edge Triggered Flip-Flop
10.6 Master-Slave D-Flip-Flop
10.7 Flip-Flop
10.7.1 Master-Slave JK Flip-Flop
10.7.2 Working of the Master-Slave JK Flip-Flop
10.8 Digital Counters
10.8.1 Asynchronous Counters
10.8.2 Synchronous Counter
10.9 Four Bit Decade Counter
10.10 4-Bit Binary Counter
10.11 Characteristics of a Counter
10.12 To Decode the Given State of a Counter
10.13 Multiplexer
10.14 Parity of Binary Word and Its Computation
10.14.1 Parity of a Binary Word
10.14.2 Application of Parity
10.14.3 Parity Generation and Checking
11 Special Circuits and Devices
Abstract
11.1 Semiconductor Memories
11.1.1 Introduction
11.1.2 Memory Types
11.2 Architecture of Analog-To-Digital and Digital-To-Analog Converter
11.2.1 Sampling and Hold Unit
11.2.2 Analog-To-Digital Conversion
11.2.3 ADC Types
11.2.4 Digital-To-Analog Converter (DAC)
11.3 Computer Organization and Arithematic Logic Unit (ALU)
11.3.1 Airthematic and Logic Unit
11.3.2 Design Architecture of ALU
Index