An Introduction to Sobolev Spaces and Interpolation Spaces

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.

Author(s): Luc Tartar (auth.)
Series: Lecture Notes of the Unione Matematica Italiana 3
Edition: 1
Publisher: Springer-Verlag Berlin Heidelberg
Year: 2007

Language: English
Pages: 219
Tags: Partial Differential Equations; Functional Analysis

Front Matter....Pages I-XXV
Historical Background....Pages 1-7
The Lebesgue Measure, Convolution....Pages 9-14
Smoothing by Convolution....Pages 15-16
Truncation; Radon Measures; Distributions....Pages 17-20
Sobolev Spaces; Multiplication by Smooth Functions....Pages 21-25
Density of Tensor Products; Consequences....Pages 27-31
Extending the Notion of Support....Pages 33-36
Sobolev's Embedding Theorem, 1 ≤ < N....Pages 37-41
Sobolev's Embedding Theorem, N ≤  p  ≤ ∞....Pages 43-47
Poincaramp;#x00E9;'s Inequality....Pages 49-51
The Equivalence Lemma; Compact Embeddings....Pages 53-57
Regularity of the Boundary; Consequences....Pages 59-63
Traces on the Boundary....Pages 65-68
Green's Formula....Pages 69-71
The Fourier Transform....Pages 73-79
Traces of H s ( R N )....Pages 81-84
Proving that a Point is too Small....Pages 85-87
Compact Embeddings....Pages 89-92
Lax–Milgram Lemma....Pages 93-98
The Space H ( div ; Ω )....Pages 99-101
Background on Interpolation; the Complex Method....Pages 103-107
Real Interpolation; K -Method....Pages 109-113
Interpolation of L 2 Spaces with Weights....Pages 115-118
Real Interpolation; J -Method....Pages 119-122
Interpolation Inequalities, the Spaces ( E 0 , E 1 ) θ,1 ....Pages 123-125
The Lions–Peetre Reiteration Theorem....Pages 127-129
Maximal Functions....Pages 131-135
Bilinear and Nonlinear Interpolation....Pages 137-140
Obtaining L p by Interpolation, with the Exact Norm....Pages 141-143
My Approach to Sobolev's Embedding Theorem....Pages 145-147
My Generalization of Sobolev's Embedding Theorem....Pages 149-154
Sobolev's Embedding Theorem for Besov Spaces....Pages 155-158
The Lions–Magenes Space $H_{00}^{1/2} ( \Omega)$ ....Pages 159-161
Defining Sobolev Spaces and Besov Spaces for Ω ....Pages 163-164
Characterization of W s,p ( R N )....Pages 165-167
Characterization of W s,p ( Ω )....Pages 169-172
Variants with BV Spaces....Pages 173-176
Replacing BV by Interpolation Spaces....Pages 177-181
Shocks for Quasi-Linear Hyperbolic Systems....Pages 183-189
Interpolation Spaces as Trace Spaces....Pages 191-194
Duality and Compactness for Interpolation Spaces....Pages 195-198
Miscellaneous Questions....Pages 199-203
Biographical Information....Pages 205-207
Abbreviations and Mathematical Notation....Pages 209-212
Back Matter....Pages 213-219