Assuming no previous knowledge of polymers, this book provides a general introduction to the physics of solid polymers. Covering a wide range of topics within the field of polymer physics, the book begins with a brief history of the development of synthetic polymers and an overview of the methods of polymerization and processing. In the following chapter, David Bower describes important experimental techniques used in the study of polymers. The main part of the book, however, is devoted to the structure and properties of solid polymers, including blends, copolymers and liquid crystal polymers.
Author(s): David I. Bower
Edition: 1
Publisher: Cambridge University Press
Year: 2002
Language: English
Pages: 465
Cover Page......Page 1
An Introduction to Polymer Physics......Page 2
Title: An Introduction to Polymer Physics......Page 4
ISBN 9780521631372......Page 5
Contents......Page 6
Preface......Page 13
Acknowledgements......Page 16
1.1 Polymers and the scope of the book......Page 22
1.2 A brief history of the development of synthetic polymers......Page 23
1.3.1 Introduction......Page 29
1.3.2 The classification of polymers......Page 30
1.3.3 ‘Classical’ polymerisation processes......Page 33
1.3.4 Newer polymers and polymerisation processes......Page 38
1.4 Properties and applications......Page 39
1.5.1 Introduction......Page 42
1.5.2 Additives and composites......Page 43
1.5.3 Processing methods......Page 44
1.6.1 Some general polymer texts......Page 46
1.6.2 Further reading specifically for chapter 1......Page 47
2.2 Differential scanning calorimetry (DSC) and differential thermal analysis (DTA)......Page 48
2.3 Density measurement......Page 52
2.4 Light scattering......Page 53
2.5.1 Wide-angle scattering (WAXS)......Page 54
2.6.1 The principles of infrared and Raman spectroscopy......Page 59
2.6.2 Spectrometers for infrared and Raman spectroscopy......Page 62
2.6.3 The infrared and Raman spectra of polymers......Page 63
2.6.4 Quantitative infrared spectroscopy – the Lambert–Beer law......Page 64
2.7.1 Introduction......Page 65
2.7.2 NMR spectrometers and experiments......Page 67
2.7.3 Chemical shifts and spin–spin interactions......Page 70
2.7.4 Magic-angle spinning, dipolar decoupling and cross polarisation......Page 71
2.7.6 Multi-dimensional NMR......Page 73
2.7.7 Quadrupolar coupling and 2H spectra......Page 75
2.8.1 Optical microscopy......Page 76
2.8.2 Electron microscopy......Page 79
2.9 Further reading......Page 83
3.2.1 Number-average and weight-average molar masses......Page 84
3.2.2 Determination of molar masses and distributions......Page 86
3.3.1 Bonding and the shapes of molecules......Page 87
3.3.3 The single freely jointed chain......Page 93
3.3.4 More realistic chains – the excluded-volume effect......Page 97
3.3.5 Chain flexibility and the persistence length......Page 101
3.4.1 Wide-angle X-ray scattering – WAXS......Page 102
3.4.2 Small-angle X-ray scattering – SAXS......Page 103
3.4.3 Light scattering......Page 104
3.4.4 Optical microscopy......Page 105
3.6 Problems......Page 106
4.1.1 Introduction......Page 108
4.1.2 Polymers with ‘automatic’ regularity......Page 110
4.1.3 Vinyl polymers and tacticity......Page 111
4.1.5 Helical molecules......Page 117
4.2.1 Introduction......Page 119
4.2.2 Fibre patterns and the unit cell......Page 120
4.2.3 Actual chain conformations and crystal structures......Page 127
4.3 Information about crystal structures from other methods......Page 130
4.4.3 Poly(ethylene terephthalate) (PET)......Page 132
4.4.4 The nylons (polyamides)......Page 134
4.6 Problems......Page 136
5.1 Introduction......Page 138
5.2.1 Introduction......Page 139
5.2.2 Experimental determination of crystallinity......Page 140
5.3 Crystallites......Page 141
5.3.1 The fringed-micelle model......Page 142
5.3.2 Chain-folded crystallites......Page 143
5.4.1 Non-crystalline regions......Page 148
5.4.3 Lamellar stacks......Page 150
5.5.1 Optical microscopy of spherulites......Page 154
5.5.2 Light scattering by spherulites......Page 156
5.5.4 Axialites and shish-kebabs......Page 157
5.6 Crystallisation and melting......Page 158
5.6.1 The melting temperature......Page 159
5.6.2 The rate of crystallisation......Page 160
5.6.3 Theories of chain folding and lamellar thickness......Page 162
5.7.1 Introduction......Page 166
5.7.2 NMR, mechanical and electrical relaxation......Page 167
5.7.3 The site-model theory......Page 169
5.7.4 Three NMR studies of relaxations with widely different values of τC......Page 171
5.7.5 Further NMR evidence for various motions in polymers......Page 177
5.9 Problems......Page 181
6.1 Introduction to the mechanical properties of polymers......Page 183
6.2.1 The elastic constants of isotropic media at small strains......Page 185
6.2.2 The small-strain properties of isotropic polymers......Page 187
6.3.1 Introduction......Page 190
6.3.2 The transition to large-strain elasticity......Page 191
6.3.3 Strain–energy functions......Page 194
6.3.4 The neo-Hookeian solid......Page 195
6.4.1 Introduction......Page 197
6.4.2 The fundamental mechanism of rubber elasticity......Page 199
6.4.3 The thermodynamics of rubber elasticity......Page 200
6.4.4 Development of the statistical theory......Page 202
6.6 Further reading......Page 205
6.7 Problems......Page 206
7.1.1 Introduction......Page 208
7.1.2 Creep......Page 209
7.1.3 Stress-relaxation......Page 211
7.1.4 The Boltzmann superposition principle (BSP)......Page 212
7.2.1 Introduction......Page 214
7.2.2 The Maxwell model......Page 215
7.2.3 The Kelvin or Voigt model......Page 216
7.2.4 The standard linear solid......Page 217
7.2.5 Real materials – relaxation-time and retardation-time spectra......Page 218
7.3.1 Transient measurements......Page 219
7.3.2 Dynamic measurements – the complex modulus and compliance......Page 220
7.3.3 Dynamic measurements; examples......Page 222
7.4 Time–temperature equivalence and superposition......Page 225
7.5.1 The determination of the glass-transition temperature......Page 227
7.5.2 The temperature dependence of the shift factor: the VFT and WLF equations......Page 229
7.5.3 Theories of the glass transition......Page 230
7.5.4 Factors that affect the value of Tg......Page 232
7.6.1 Introduction......Page 233
7.6.3 Crystalline polymers......Page 234
7.8 Problems......Page 238
8.1 Introduction......Page 241
8.2.2 The mechanism of yielding – cold drawing and the Considère construction......Page 244
8.2.3 Yield criteria......Page 247
8.2.4 The pressure dependence of yield......Page 252
8.2.5 Temperature and strain-rate dependences of yield......Page 253
8.3.1 Introduction......Page 255
8.3.2 Theories of fracture; toughness parameters......Page 256
8.3.3 Experimental determination of fracture toughness......Page 260
8.3.4 Crazing......Page 261
8.3.5 Impact testing of polymers......Page 264
8.5 Problems......Page 267
9.1 Introduction......Page 269
9.2.1 The dielectric constant and the refractive index......Page 270
9.2.2 Molecular polarisability and the low-frequency dielectric constant......Page 273
9.2.3 Bond polarisabilities and group dipole moments......Page 275
9.2.4 Dielectric relaxation......Page 277
9.2.5 The dielectric constants and relaxations of polymers......Page 281
9.3.1 Introduction......Page 288
9.3.2 Ionic conduction......Page 289
9.3.3 Electrical conduction in metals and semiconductors......Page 293
9.3.4 Electronic conduction in polymers......Page 296
9.4.1 Introduction......Page 304
9.4.2 Transparency and colourlessness......Page 305
9.4.3 The refractive index......Page 306
9.6 Problems......Page 309
10.1 Introduction – the meaning and importance of orientation......Page 311
10.2 The production of orientation in synthetic polymers......Page 312
10.2.2 Deliberate orientation by processing in the solid state......Page 313
10.2.3 Deliberate orientation by processing in the fluid state......Page 317
10.3 The mathematical description of molecular orientation......Page 319
10.4.1 Measurement of optical refractive indices or birefringence......Page 322
10.4.2 Measurement of infrared dichroism......Page 326
10.4.3 Polarised fluorescence......Page 331
10.4.5 Wide-angle X-ray scattering......Page 333
10.5 The combination of methods for two-phase systems......Page 335
10.6.1 Triangle diagrams......Page 336
10.6.2 Pole figures......Page 337
10.6.3 Limitations of the representations......Page 338
10.8 Problems......Page 339
11.2 Models for molecular orientation......Page 342
11.2.1 The affine rubber deformation scheme......Page 343
11.2.2 The aggregate or pseudo-affine deformation scheme......Page 347
11.3.1 Introduction......Page 348
11.3.2 The affine rubber model and ‘frozen-in’ orientation......Page 349
11.3.3 The affine rubber model and the stress–optical coefficient......Page 350
11.4.1 Introduction......Page 353
11.4.2 The elastic constants and the Ward aggregate model......Page 354
11.5 Takayanagi composite models......Page 356
11.6.1 Ultimate moduli......Page 359
11.6.2 Models for highly oriented polyethylene......Page 361
11.8 Problems......Page 362
12.1 Introduction......Page 364
12.2.2 Conditions for polymer–polymer miscibility......Page 365
12.2.3 Experimental detection of miscibility......Page 371
12.2.4 Compatibilisation and examples of polymer blends......Page 375
12.2.5 Morphology......Page 377
12.2.6 Properties and applications......Page 379
12.3.1 Introduction and nomenclature......Page 381
12.3.2 Linear copolymers: segregation and melt morphology......Page 383
12.3.3 Copolymers combining elastomeric and rigid components......Page 388
12.3.4 Semicrystalline block copolymers......Page 389
12.4.1 Introduction......Page 391
12.4.2 Types of mesophases for small molecules......Page 392
12.4.3 Types of liquid-crystal polymers......Page 394
12.4.4 The theory of liquid-crystal alignment......Page 396
12.4.5 The processing of liquid-crystal polymers......Page 403
12.4.6 The physical structure of solids from liquid-crystal polymers......Page 404
12.4.7 The properties and applications of liquid-crystal polymers......Page 407
12.6 Problems......Page 412
Appendix: Cartesian tensors......Page 414
Further reading......Page 417
Solutions to problems......Page 418
Index......Page 446