An introduction to operator polynomials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Rodman, Leiba
Series: Operator theory advances and applications 38
Publisher: Birkhäuser Basel
Year: 1989

Language: English
Pages: 399
City: Basel
Tags: Science (General)

Content: 1. Linearizations.- 1.1 Definitions and examples.- 1.2 Uniqueness of linearization.- 1.3 Existence of linearizations.- 1.4 Operator polynomials that are multiples of identity modulo compacts.- 1.5 Inverse linearization of operator polynomials..- 1.6 Exercises.- 1.7 Notes.- 2. Representations and Divisors of Monic Operator Polynomials.- 2.1 Spectral pairs.- 2.2 Representations in terms of spectral pairs.- 2.3 Linearizations.- 2.4 Generalizations of canonical forms.- 2.5 Spectral triples.- 2.6 Multiplication and division theorems.- 2.7 Characterization of divisors in terms of subspaces.- 2.8 Factorable indexless polynomials.- 2.9 Description of the left quotients.- 2.10 Spectral divisors.- 2.11 Differential and difference equations.- 2.12 Exercises.- 2.13 Notes.- 3. Vandermonde Operators and Common Multiples.- 3.1 Definition and basic properties of the Vandermonde operator.- 3.2 Existence of common multiples.- 3.3 Common multiples of minimal degree.- 3.4 Fredholm Vandermonde operators.- 3.5 Vandermonde operators of divisors.- 3.6 Divisors with disjoint spectra.- Appendix: Hulls of operators.- 3.7 Application to differential equations.- 3.8 Interpolation problem.- 3.9 Exercises.- 3.10 Notes.- 4. Stable Factorizations of Monic Operator Polynomials.- 4.1 The metric space of subspaces in a Banach space.- 4.2 Spherical gap and direct sums.- 4.3 Stable invariant subspaces.- 4.4 Proof of Theorems 4.3.3 and 4.3.4.- 4.5 Lipschitz stable invariant subspaces and one-sided resolvents.- 4.6 Lipschitz continuous dependence of supporting subspaces and factorizations.- 4.7 Stability of factorizations of monic operator polynomials.- 4.8 Stable sets of invariant subspaces.- 4.9 Exercises.- 4.10 Notes.- 5. Self-Adjoint Operator Polynomials.- 5.1 Indefinite scalar products and subspaces..- 5.2 J-self-adjoint and J-positizable operators.- 5.3 Factorizations and invariant semidefinite subspaces.- 5.4 Classes of polynomials with special factorizations.- 5.5 Positive semidefinite operator polynomials.- 5.6 Strongly hyperbolic operator polynomials.- 5.7 Proof of Theorem 5.6.4.- 5.8 Invariant subspaces for unitary and self-adjoint operators in indefinite scalar products.- 5.9 Self-adjoint operator polynomials of second degree.- 5.10 Exercises.- 5.11 Notes.- 6. Spectral Triples and Divisibility of Non-Monic Operator Polynomials.- 6.1 Spectral triples: definition and uniqueness.- 6.2 Calculus of spectral triples.- 6.3 Construction of spectral triples.- 6.4 Spectral triples and linearization.- 6.5 Spectral triples and divisibility.- 6.6 Characterization of spectral pairs.- 6.7 Reduction to monic polynomials.- 6.8 Exercises.- 6.9 Notes.- 7. Polynomials with Given Spectral Pairs and Exactly Controllable Systems.- 7.1 Exactly controllable systems.- 7.2 Spectrum assignment theorems.- 7.3 Analytic dependence of the feedback.- 7.4 Polynomials with given spectral pairs.- 7.5 Invariant subspaces and divisors.- 7.6 Exercises.- 7.7 Notes.- 8. Common Divisors and Common Multiples.- 8.1 Common divisors.- 8.2 Common multiples.- 8.3 Coprimeness and Bezout equation.- 8.4 Analytic behavior of common multiples.- 8.5 Notes.- 9. Resultant and Bezoutian Operators.- 9.1 Resultant operators and their kernel.- 9.2 Proof of Theorem 9.1.4.- 9.3 Bezoutian operator.- 9.4 The kernel of a Bezoutian operator.- 9.5 Inertia theorems.- 9.6 Spectrum separation.- 9.7 Spectrum separation problem: deductions and special cases.- 9.8 Applications to difference equations.- 9.9 Notes.- 10. Wiener-Hopf Factorization.- 10.1 Definition and the main result.- 10.2 Pairs of finite type and proof of Theorem 10.1.1.- 10.3 Finite-dimensional perturbations.- 10.4 Notes.- References.- Notation.