An introduction to maximum principles and symmetry in elliptic problems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of nonlinear elliptic equations. Gidas, Ni and Nirenberg, building on the work of Alexandrov and Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. These recent and important results are presented with minimal prerequisites, in a style suited to graduate students. Two long appendices give a leisurely account of basic facts about the Laplace and Poisson equations, and there is an abundance of exercises, with detailed hints, some of which contain new results.

Author(s): L. E. Fraenkel
Series: Cambridge Tracts in Mathematics
Publisher: CUP
Year: 2000

Language: English
Pages: 350