The research and development of nanofibers has gained much prominence in recent years due to the heightened awareness of its potential applications in the medical, engineering and defense fields. Among the most successful methods for producing nanofibers is the electrospinning process. In this timely book, the areas of electrospinning and nanofibers are covered for the first time in a single volume. The book can be broadly divided into two parts: the first comprises descriptions of the electrospinning process and modeling to obtain nanofibers while the second describes the characteristics and applications of nanofibers. The material is aimed at both newcomers and experienced researchers in the area.
Author(s): et al Seeram Ramakrishna
Edition: No Card Pocket
Publisher: World Scientific
Year: 2005
Language: English
Pages: 396
City: Hackensack, NJ
Foreword......Page 6
Contents......Page 8
1.1. Preface of Nanofibers......Page 14
1.2. Nanotechnology and Nanofibers......Page 16
1.3. Various Ways to Make Nanofibers......Page 20
1.3.1. Drawing......Page 23
1.3.2. Template Synthesis......Page 25
1.3.3. Phase Separation......Page 26
1.3.5. Electrospinning......Page 28
1.4. Scope of This Book......Page 31
2. Basics Relevant to Electrospinning......Page 35
2.1.1. Polymers......Page 36
2.1.2. Composites......Page 61
2.1.3 Ceramics......Page 64
2.2.1. Surface Tension......Page 76
2.2.2. Polymer Solubility......Page 79
2.2.3. Viscosity......Page 82
2.2.4. Volatility (Evaporation) of Solution......Page 91
2.2.5. Conductivity of Solution......Page 93
2.3. Electrostatics......Page 94
2.3.1. Electric Field......Page 95
2.3.2. Potential Difference and Electric Field Representations......Page 96
2.3.3. Surface Charge of Insulator......Page 97
2.3.4. Field Ionization......Page 98
2.4. Conclusions......Page 99
3. Electrospinning Process......Page 103
3.1.1. Molecular Weight and Solution Viscosity......Page 104
3.1.2. Surface Tension......Page 109
3.1.3. Solution Conductivity......Page 111
3.1.4. Dielectric Effect of Solvent......Page 114
3.2.1. Voltage......Page 116
3.2.2. Feedrate......Page 119
3.2.4. Effect of Collector......Page 121
3.2.5. Diameter of Pipette Orifice / Needle......Page 124
3.2.6. Distance Between Tip and Collector......Page 125
3.3. Ambient Parameters......Page 126
3.3.1. Humidity......Page 127
3.3.3. Pressure......Page 129
3.5. Creation of Different Nanofibers......Page 130
3.5.1. Porous Nanofibers......Page 131
3.5.2. Flattened or Ribbon-Like Fibers......Page 135
3.5.3. Branched Fibers......Page 138
3.5.4. Helical Fibers......Page 139
3.5.5. Hollow Nanofibers......Page 140
3.6. Uniformity and Productivity of Nanofiber Webs......Page 143
3.6.1. Jet Stability......Page 144
3.6.2. Multiple-Spinning Setup......Page 145
3.7. Mixed Electrospun Fiber Mesh......Page 146
3.8.1. Cylinder Collector......Page 148
3.8.2. A Knife Edge Disk......Page 151
3.8.3. An Auxiliary Electrode/Electrical Field......Page 152
3.8.4. Parallel Conducting Collector......Page 155
3.9. Fiber Yarn and Textile......Page 158
3.9.1. Hybrid Fiber Yarns......Page 159
3.9.2. Electrospun Fiber Yarn......Page 160
3.9.3. Twisted Fiber Yarn......Page 161
3.10. Variations to Electrospinning......Page 162
3.10.1. Scanning Tip Electrospinning Source......Page 163
3.10.2. Nanofiber Interconnections Between Microscale Features......Page 164
3.10.3. Mass Production Through Needleless Electrospinning......Page 165
3.11. Conclusions......Page 167
4.0. Nomenclature......Page 168
4.1. Introduction......Page 170
4.2. Preliminaries......Page 171
4.3.1. Jet Representation......Page 174
4.3.2. Modeling Viscoelastic Behavior......Page 175
4.3.3. Coordinate System......Page 180
4.4.1. Conservation of Mass......Page 181
4.4.2. Conservation of Momentum......Page 183
4.4.3. Conservation of Charge......Page 185
4.5. Consideration of Forces......Page 186
4.6. Instability......Page 187
4.7. Results......Page 192
4.8. Future Trends and Challenges......Page 201
4.8.2. Core-shell Flow......Page 202
4.8.5. Gas-assisted Flow......Page 203
4.9. Conclusions......Page 204
5. Characterization......Page 205
5.1.1. Fiber Diameter......Page 206
5.1.2. Pore Size and Porosity......Page 212
5.1.3. Surface Contact Angle Measurement......Page 219
5.1.4. Others......Page 222
5.2.1. Crystalline Structure......Page 223
5.2.2. Organic Group Detection......Page 238
5.2.3. Others......Page 242
5.3.1. Single Nanofiber......Page 247
5.3.2. Nanofiber Yarn......Page 253
5.3.3. Nanofiber Membrane......Page 254
5.4. Conclusions......Page 258
6.1.1. Introduction......Page 260
6.1.2. Physical Coating or Blending......Page 261
6.1.3. Graft Copolymerization......Page 263
6.1.4. Plasma Treatment and Chemical Vapor Deposition......Page 269
6.1.5. Chemical Treatment......Page 270
6.2.2. Functionalization of Nanofibers for Affinity Membrane Application......Page 274
6.2.3. Functionalization of Nanofiber for Tissue Engineering scaffold Application......Page 279
6.2.4. Functionalization of Nanofibers for Sensor Application......Page 282
6.2.5. Functionalization of Nanofiber for Protective Cloth Application......Page 284
6.2.6. Functionalization of Nanofibers for Other Applications......Page 286
6.3. Conclusions......Page 287
7.1. Introduction......Page 288
7.2. Affinity Membranes......Page 292
7.3. Drug Release......Page 298
7.4. Tissue Scaffolds......Page 304
7.5. Wound Dressing......Page 320
7.6. Filter Media......Page 322
7.7. Chemical and Biological Protective Clothing......Page 324
7.8. Energy and Electrical Application......Page 333
7.9. Sensors......Page 339
7.10. Composite Reinforcement......Page 346
7.11. Conclusions......Page 352
Amorphous......Page 354
Contact angle......Page 355
Extracellular Matrix......Page 356
Maxwell Fluid......Page 357
Nanofiber Web......Page 358
Plasma Treatment......Page 359
Surface tension......Page 360
Transconductance......Page 361
Volatility......Page 362
Appendix B Useful Websites on Electrospinning and Nanofibers......Page 363
Bibliography......Page 365
Index......Page 394