Author(s): Robert B. Burckel
Series: Pure& Applied Mathematics
Publisher: Academic Press
Year: 1980
Language: English
Pages: 571
An Introduction to Classical Complex Analysis......Page 4
Copyright Page......Page 5
Contents......Page 6
Preface......Page 10
§ 1 Set Theory......Page 14
§ 3 The Battlefield......Page 15
§ 4 Metric Spaces......Page 16
§ 5 Limsup and All That......Page 19
§ 6 Continuous Functions......Page 21
§ 7 Calculus......Page 22
§ 1 Elementary Results on Connectedness......Page 23
§ 2 Connectedness of Intervals, Curves and Convex Sets......Page 24
§ 3 The Basic Connectedness Lemma......Page 29
§ 4 Components and Compact Exhaustions......Page 30
§ 5 Connectivity of a Set......Page 34
§ 6 Extension Theorems......Page 38
Notes to Chapter I......Page 40
§ 1 Holomorphic and Harmonic Functions......Page 42
§ 2 Integrals along Curves......Page 45
§ 3 Differentiating under the Integral......Page 48
§ 4 A Useful Sufficient Condition for Differentiability......Page 50
Notes to Chapter II......Page 51
§ 2 Power Series......Page 54
§ 3 The Complex Exponential Function......Page 61
§ 4 Bernoulli Polynomials, Numbers and Functions......Page 74
§ 5 Cauchy's Theorem Adumbrated......Page 78
§ 6 Holomorphic Logarithms Previewed......Page 79
Notes to Chapter III......Page 81
§ 2 Curves Winding around Points......Page 84
§ 3 Homotopy and the Index......Page 91
§ 4 Existence of Continuous Logarithms......Page 93
§ 5 The Jordan Curve Theorem......Page 103
§ 6 Applications of the Foregoing Technology......Page 107
§ 7 Continuous and Holomorphic Logarithms in Open Sets......Page 112
§ 8 Simple Connectivity for Open Sets......Page 114
Notes to Chapter IV......Page 116
§ 1 Goursat’s Lemma and Cauchy’s Theorem for Starlike Regions......Page 121
§ 2 Maximum Principles......Page 128
§ 3 The Dirichlet Problem for Disks......Page 135
§ 4 Existence of Power Series Expansions......Page 145
§ 5 Harmonic Majorization......Page 152
§ 6 Uniqueness Theorems......Page 166
§ 7 Local Theory......Page 173
Notes to Chapter V......Page 184
§ 1 Schwarz’ Lemma and the Conformal Automorphisms of Disks......Page 192
§ 2 Many-to-one Maps of Disks onto Disks......Page 198
§ 3 Applications to Half-planes, Strips and Annuli......Page 199
§ 4 The Theorem of Carathéodory, Julia, Wolff, et al.......Page 204
§ 5 Subordination......Page 208
Notes to Chapter VI......Page 216
§ 1 Convergence in H(U)......Page 219
§ 2 Applications of the Convergence Theorems; Boundedness Criteria......Page 229
§ 3 Prescribing Zeros......Page 238
§ 4 Elementary Iteration Theory......Page 243
Notes to Chapter VII......Page 252
§ 1 The Basic Integral Representation Theorem......Page 257
§ 2 Applications to Approximation......Page 261
§ 3 Other Applications of the Integral Representation......Page 266
§ 4 Some Special Kinds of Approximation......Page 269
§ 5 Carleman’s Approximation Theorem......Page 274
§ 6 Harmonic Functions in a Half-plane......Page 277
Notes to Chapter VIII......Page 290
§ 1 Introduction......Page 294
§ 2 The Proof of Carathéodory and Koebe......Page 299
§ 4 Boundary Behavior for Jordan Regions......Page 304
§ 5 A Few Applications of the Osgood–Taylor–Carathéodory Theorem......Page 311
§ 6 More on Jordan Regions and Boundary Behavior......Page 316
§ 7 Harmonic Functions and the General Dirichlet Problem......Page 323
§ 8 The Dirichlet Problem and the Riemann Mapping Theorem......Page 334
Notes to Chapter IX......Page 338
§ 1 Simple Connectivity......Page 345
§ 2 Double Connectivity......Page 349
Notes to Chapter X......Page 356
§ 1 Laurent Series and Classification of Singularities......Page 360
§ 2 Rational Functions......Page 367
§ 3 Isolated Singularities on the Circle of Convergence......Page 376
§ 4 The Residue Theorem and Some Applications......Page 378
§ 5 Specifying Principal Parts—Mittag-Leffler’s Theorem......Page 391
§ 6 Meromorphic Functions......Page 396
§ 7 Poisson’s Formula in an Annulus and Isolated Singularities of Harmonic Functions......Page 399
Notes to Chapter XI......Page 407
§ 1 Logarithmic Means and Jensen’s Inequality......Page 412
§ 2 Miranda’s Theorem......Page 418
§ 3 Immediate Applications of Miranda......Page 433
§ 4 Normal Families and Julia’s Extension of Picard’s Great Theorem......Page 437
§ 5 Sectorial Limit Theorems......Page 442
§ 6 Applications to Iteration Theory......Page 451
§ 7 Ostrowski’s Proof of Schottky’s Theorem......Page 452
Notes to Chapter XII......Page 457
Bibliography......Page 463
Name Index......Page 545
Subject Index......Page 555
Symbol Index......Page 569
Series Summed......Page 570
Integrals Evaluated......Page 571