An Introduction to Bayesian Analysis: Theory and Methods (Springer Texts in Statistics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.

Author(s): Jayanta K. Ghosh, Mohan Delampady, Tapas Samanta
Series: Springer Texts in Statistics
Edition: 1
Publisher: Springer
Year: 2006

Language: English
Pages: 367
Tags: Математика;Теория вероятностей и математическая статистика;Математическая статистика;