An Introduction to Atmospheric Physics, Second Edition

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A quantitative introduction to the Earth's atmosphere for intermediate-advanced undergraduate and graduate students, with an emphasis on underlying physical principles. This edition has been brought completely up-to-date, and now includes a new chapter on the physics of climate change which builds upon material introduced in earlier chapters, giving the student a broad understanding of some of the physical concepts underlying this most important and topical subject. In contrast to many other books on atmospheric science, the emphasis is on the underlying physics. Atmospheric applications are developed mainly in the problems given at the end of each chapter. The book is an essential resource for all students of atmospheric physics as part of an atmospheric science, meteorology, physics, Earth science, planetary science, or applied mathematics course.

Author(s): David G. Andrews
Edition: 2nd
Publisher: Cambridge University Press
Year: 2010

Language: English
Pages: 248
Tags: Науки о Земле;Метеорология и климатология;Физико-химические процессы в атмосфере. Методы измерений;

Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface to the Second Edition......Page 11
1.1 The atmosphere as a physical system......Page 13
1.2 Atmospheric models......Page 15
1.3 Two simple atmospheric models......Page 16
1.3.1 A model with a non-absorbing atmosphere......Page 17
1.3.2 A simple model of the greenhouse effect......Page 18
1.4 Some atmospheric observations......Page 19
1.4.1 The mean temperature and wind fields......Page 20
1.4.2 Gravity waves......Page 24
1.4.3 Rossby waves......Page 25
1.4.4 Ozone......Page 26
1.5 Weather and climate......Page 29
Further reading......Page 30
2.1 The ideal gas law......Page 31
2.2 Atmospheric composition......Page 32
2.3 Hydrostatic balance......Page 34
2.4 Entropy and potential temperature......Page 36
2.5 Parcel concepts......Page 38
2.6 The available potential energy......Page 42
2.7 Moisture in the atmosphere......Page 44
2.8 The saturated adiabatic lapse rate......Page 49
2.9 The tephigram......Page 52
2.10 Cloud formation......Page 54
Problems......Page 60
3.1 Basic physical concepts......Page 64
3.1.1 The Planck function......Page 66
3.1.2 Local thermodynamic equilibrium......Page 68
3.2.1 Radiometric quantities......Page 69
3.2.2 Extinction and emission......Page 72
3.2.3 The diffuse approximation......Page 74
3.3.1 Vibrational and rotational states......Page 75
3.3.2 Line shapes......Page 78
(a) Collisional or natural broadening......Page 79
(b) Doppler broadening......Page 80
3.4 Transmittance......Page 81
3.5.1 The solar spectrum......Page 83
3.5.2 Infra-red absorption......Page 84
3.5.3 Ultra-violet absorption......Page 85
3.6.1 Basic ideas......Page 87
3.6.2 Short-wave heating......Page 88
3.6.3 Long-wave heating and cooling......Page 90
3.6.4 Net radiative heating rates......Page 91
3.7.1 Two-layer atmosphere in radiative equilibrium, including an optically thin stratosphere......Page 93
3.7.2 Continuously stratified atmosphere in radiative equilibrium......Page 95
3.8 A simple model of scattering......Page 98
Further reading......Page 100
Problems......Page 101
4.1 Mass conservation......Page 106
4.2 The material derivative......Page 107
4.3 An alternative form of the continuity equation......Page 110
4.5 The Navier--Stokes equation......Page 111
4.6 Rotating frames of reference......Page 114
4.7.1 Spherical coordinates......Page 116
4.7.2 Approximations to the spherical equations......Page 117
4.7.3 Tangent-plane geometry......Page 118
4.8 Geostrophic and hydrostatic approximations......Page 119
4.8.1 The thermal windshear equations......Page 121
4.8.2 A circular vortex: gradient--wind balance......Page 122
4.9 Pressure coordinates and geopotential......Page 123
4.10 The thermodynamic energy equation......Page 125
Problems......Page 126
5.1 Vorticity and potential vorticity......Page 131
5.2 The Boussinesq approximation......Page 134
5.2.1 Linearised equations and energetics......Page 136
5.3 Quasi-geostrophic motion......Page 137
5.4 Gravity waves......Page 140
5.5 Rossby waves......Page 144
5.6.1 General considerations......Page 148
5.6.2 The laminar Ekman layer......Page 151
5.7 Instability......Page 153
5.7.1 Baroclinic instability......Page 155
5.7.2 Barotropic instability......Page 158
Problems......Page 159
6.1 Thermodynamics of chemical reactions......Page 163
6.2 Chemical kinetics......Page 165
6.3 Bimolecular reactions......Page 167
6.4 Photo-dissociation......Page 169
6.5.1 Chapman chemistry......Page 170
6.5.2 Catalytic cycles......Page 172
6.6 The transport of chemicals......Page 173
6.7 The Antarctic ozone hole......Page 176
Problems......Page 180
7.1 Atmospheric observations......Page 183
7.2 Atmospheric remote sounding from space......Page 184
7.2.1 Thermal emission measurements......Page 185
7.2.2 Backscatter measurements......Page 192
7.3.1 The Dobson ozone spectrophotometer......Page 194
7.3.2 Radars......Page 195
7.3.3 Lidars......Page 200
Further reading......Page 201
Problems......Page 202
8.1 Introduction......Page 207
8.2 An energy balance model......Page 210
Step function forcing......Page 212
Ramp forcing......Page 213
8.3.1 Response to forcing that initially increases linearly with time and then becomes constant......Page 214
8.4 Climate feedbacks......Page 216
8.4.2 Water vapour feedback......Page 217
8.4.3 Other feedback processes......Page 218
8.5 The radiative forcing due to an increase in carbon dioxide......Page 219
Further reading......Page 223
Problems......Page 224
9.1 The hierarchy of models......Page 227
9.2 Numerical methods......Page 229
9.3 Uses of complex numerical models......Page 231
9.4 Laboratory models......Page 232
9.5 Final remarks......Page 234
9.5.3 The Antarctic ozone hole......Page 235
Further reading......Page 236
Appendix A Useful physical constants
......Page 237
Appendix B Derivation of the equations of motion in spherical
coordinates......Page 239
References......Page 241
Index......Page 246