An Applied Guide to Process and Plant Design, Second Edition, covers plant layout, the use of spreadsheet programs, and key drawings produced by professional engineers as aids to design—all topics typically learned on the job rather than in education. Readers will learn how to produce smarter plant design through the use of computer tools, including Excel and AutoCAD, "What If Analysis", statistical tools and Visual Basic for more complex problems. The book also includes a wealth of selection tables, covering the key aspects of professional plant design which engineering students and early-career engineers tend to find most challenging.
-Includes new and expanded content, including illustrative case studies and practical examples
-Explains how to deliver a process design that meets both business and safety criteria
-Covers plant layout and the use of spreadsheet programs and key drawings as aids to design
-Includes a comprehensive set of selection tables, covering aspects of professional plant design which early-career designers find most challenging
Author(s): Sean Moran
Series: IChemE
Edition: 2nd
Publisher: Elsevier
Year: 2019
Language: English
Pages: 534
Cover......Page 1
An Applied Guide to Process and Plant Design......Page 3
Copyright......Page 4
Preface......Page 5
Acknowledgments......Page 7
Part I: Practical Principles
......Page 8
Introduction......Page 9
What is engineering?......Page 11
What is design?......Page 12
Engineering design......Page 13
Project life cycle......Page 14
Process plant design......Page 16
Process plant design versus process design......Page 17
Variation/creativity......Page 18
Selection/analysis......Page 19
Academic versus professional practice......Page 20
What we design and what we do not......Page 22
Design manuals......Page 23
Rules of thumb......Page 24
Professional judgment......Page 25
State of the art and good engineering practice......Page 26
The use and abuse of computers......Page 28
Further reading......Page 29
“Conceptual design of chemical processes”......Page 31
Modeling as “conceptual design”......Page 33
Conceptual design......Page 34
Front-End Engineering Design/basic design......Page 36
Site redesign......Page 37
Posthandover redesign......Page 38
Fast-tracking......Page 39
Front-End Engineering Design/detailed design fast-tracking......Page 40
The fast-track to bad design......Page 41
Further reading......Page 43
Design basis and philosophies......Page 44
Specification......Page 45
Process flow diagram......Page 47
Piping and instrumentation diagram......Page 48
Functional design specification......Page 51
Plot plan/general arrangement/layout drawing......Page 52
Academic approach......Page 53
Professional budget pricing......Page 55
Equipment list/schedule......Page 56
Hazard and Operability study......Page 57
Design calculations......Page 61
Isometric piping drawings......Page 64
Three-dimensional model......Page 66
Further reading......Page 67
General......Page 68
Use of computers by chemical engineers......Page 69
Implications of modern design tools......Page 70
Unit operation sizing and selection......Page 71
Mass balance......Page 72
Handheld calculators......Page 73
MS Excel......Page 74
Microsoft Visual Basic......Page 76
PTC Mathcad......Page 77
Simulation programs......Page 78
Invensys SimSci Pro/II......Page 79
COMSOL Multiphysics, etc.......Page 80
Oracle Primavera......Page 81
PTC Creo......Page 82
3D CAD......Page 83
AVEVA PDMS/AVEVA Everything3D......Page 84
Model review software......Page 85
Bentley Systems Axsys.Process/PlantWise......Page 86
Microsoft Visio......Page 87
Further reading......Page 88
Academics as fortune tellers......Page 89
Process porn......Page 90
Will first-principles design replace heuristic design in future?......Page 93
Will primary scientific research become the basis of engineering design in future?......Page 94
Will “chemical process design” replace process plant design in future?......Page 95
Will process simulation replace the design process in future?......Page 96
How have things changed in process plant design?......Page 98
Further reading......Page 100
Part II: Professional Practice
......Page 101
Neglected industries......Page 102
Water-based......Page 103
Biochemical engineering......Page 104
Continuous versus Batch Design......Page 105
Apparent simplicity......Page 106
Batch integrity......Page 107
Batch distillation......Page 108
Energy balance and utility requirements......Page 109
Further reading......Page 112
Introduction......Page 113
Matching design rigor with stage of design......Page 115
Implications for safety......Page 117
Rule of thumb design......Page 118
First-principles design......Page 119
Client documentation......Page 121
Standards......Page 122
Pilot plant trials/operational data......Page 123
The Internet......Page 124
Further reading......Page 125
Introduction......Page 126
Design methodologies......Page 127
Interesting versus boring design......Page 129
Simple/robust versus complicated/fragile design......Page 131
Lessons from the slide rule......Page 132
Setting the design envelope......Page 133
Summary statistics......Page 135
Implications of new design tools......Page 136
Manager/engineer tensions in design......Page 137
Manager/engineer Tensions I: risk aversion......Page 138
Manager/engineer Tensions III: “Technicism”......Page 139
Other engineer/nonengineer tensions in design......Page 140
Whole-system design methodology......Page 141
Variations on a Theme......Page 142
Further reading......Page 144
Reality check......Page 145
Unsteady state......Page 146
Implications of feedstock and product specifications......Page 147
How to set out a mass and energy balance in MS Excel......Page 148
Using MS Excel for iterative calculations: “Goal Seek” and “Solver”......Page 150
Matching design rigor with stage of design......Page 152
Level 1—superficial velocity......Page 153
Liquids......Page 154
Net positive suction head......Page 156
Gases......Page 157
Liquids......Page 158
Hydraulic networks......Page 159
Screening for water hammer......Page 160
Pump curves......Page 162
Further reading......Page 165
Part III: Low Level Design
......Page 166
What process engineers design......Page 167
Matching design rigor with stage of design......Page 168
Scaling and corrosion......Page 169
Fluid transport machinery (pumps/blowers/compressors/fans)......Page 171
Flow control devices (valves)......Page 176
Ultrashortcut heat exchanger design......Page 183
Motor control centers......Page 185
Cabling......Page 188
Control systems......Page 189
Programmable logic controllers......Page 190
Distributed control system......Page 191
Further reading......Page 192
Rule of thumb design......Page 193
Design from manufacturers’ literature......Page 195
Sources of design data......Page 196
Further reading......Page 197
Matching design rigor with stage of design......Page 198
The basics......Page 199
Capital cost estimation by MPI/factorial method......Page 200
Economic potential......Page 201
Accurate capital cost estimation......Page 202
Bought-in mechanical items......Page 203
Software and instrumentation installation......Page 204
Design consultants......Page 205
Margins......Page 206
Further reading......Page 207
Part IV: High Level Design
......Page 208
Introduction......Page 209
Matching design rigor with stage of design......Page 210
Operation and maintenance manuals......Page 211
Automatic control......Page 212
Precision......Page 213
Specification of control systems......Page 214
Alarms, inhibits, stops, interlocks, and emergency stops......Page 215
Pump speed control......Page 217
Pump stroke length control......Page 218
Centrifugal......Page 219
Backwash control......Page 220
Chemical cleaning control......Page 221
Fired heaters/boilers......Page 223
Dry running protection......Page 224
Pumps: centrifugal......Page 225
Pumps: dosing......Page 227
Tanks......Page 228
Valves......Page 229
Valve positioner/limit switch......Page 230
Further reading......Page 232
Introduction......Page 233
What is layout design?......Page 234
Terminology......Page 235
General principles......Page 237
Health/safety/environment......Page 239
Site selection......Page 240
Regulatory environment......Page 241
General principles......Page 242
Separation principles......Page 243
Plant layout and cost......Page 244
Plant layout and esthetics......Page 245
In which direction is the prevailing wind?......Page 246
Construction, commissioning, and maintenance......Page 247
Earthworks......Page 248
Conceptual layout methodology......Page 249
Detailed layout methodology......Page 250
Further reading......Page 251
Why only reasonably?......Page 252
Matching design rigor with stage of design......Page 254
Simplify......Page 255
Human factors......Page 256
Limit effects/avoid knock-on effects......Page 257
HAZID......Page 258
HAZAN......Page 259
Layer of protection analysis......Page 260
Functional safety standards......Page 261
Safety Integrity Level......Page 262
Outline HAZOP procedure......Page 263
Reporting......Page 265
Layout safety review......Page 266
IChemE metrics......Page 267
Life cycle analysis......Page 268
Personal and process safety......Page 269
Vertical access......Page 270
Explosive atmospheres: Dangerous Substances and Explosive Atmospheres Regulations......Page 271
Flammability hazards......Page 272
Confined space entry......Page 273
Overpressure protection......Page 275
Cooling water/medium failure......Page 276
Blowout panels, etc.......Page 277
Static protection......Page 279
Emergency shutdown valves......Page 280
Scrubbers......Page 282
Quench tanks......Page 283
Inerting......Page 284
Further reading......Page 285
Lessons from disaster......Page 287
Safety second......Page 288
Especially forgettable times, places, and things......Page 289
Which design errors are the most dangerous?......Page 290
Accident summary......Page 293
Accident summary......Page 295
Failings in technical measures......Page 296
Failings in technical measures......Page 297
Failings in technical measures......Page 298
Accident summary......Page 300
Accident summary......Page 301
Effect on legislation/codes/standards......Page 302
Failings in technical measures......Page 303
Accident summary......Page 304
Accident summary......Page 305
Failings in technical measures......Page 306
Accident summary......Page 307
Accident summary......Page 308
Effect on legislation/codes/standards......Page 309
Communication......Page 310
Accident summary......Page 311
Accident summary......Page 312
Effect on legislation/codes/standards......Page 313
Accident summary......Page 314
Failings in technical measures......Page 315
Accident summary......Page 316
Accident summary......Page 317
Effect on legislation/codes/standards......Page 318
Effect on legislation/codes/standards......Page 319
Further reading......Page 320
Part V: Advanced Design
......Page 321
Introduction......Page 322
Blackfield design......Page 323
Brownfield process plant design and its near enemy: nofield process design......Page 324
Why is nofield process design stupid?......Page 325
Tackling brownfield process plant design......Page 326
First, define the problem......Page 327
Contractual and general......Page 328
Operational......Page 329
Supporting information 2: human intelligence......Page 330
Supporting information 3: the customer is always right......Page 331
Key constraints......Page 332
Interdisciplinary design review......Page 333
Consultation with electrical/software partners......Page 334
Consultation with civils/buildings partners......Page 335
Quality assurance and document control......Page 336
The literature of professional practice......Page 338
Further reading......Page 340
Excessive novelty......Page 341
Lack of consideration of the design envelope......Page 342
Parallel and series installation......Page 343
Lack of consideration of processes away from the core process stream......Page 344
Academic “Hazard and Operability Study”......Page 345
Uncritical use of online resources......Page 346
Lack of awareness of utility requirements......Page 347
Multiple pumps per line......Page 348
Use of actuated bypass valves......Page 349
Lack of consideration of the details of drainage systems......Page 350
Layout errors......Page 351
Instrument location......Page 352
Lack of appreciation for “technician-level knowledge”......Page 353
Lack of willingness to go and directly look at process problems......Page 354
Further reading......Page 355
Matching design rigor with stage of design......Page 356
Process integration......Page 357
How to integrate design......Page 358
Pinch Analysis......Page 360
Capital cost of “integrated” plants......Page 365
Maintaining “integrated” plants......Page 366
Further reading......Page 367
The art of engineering......Page 368
The philosophy of engineering......Page 369
The literature of engineering......Page 370
Personal sota......Page 371
Further reading......Page 375
Introduction......Page 376
Example 2......Page 377
Common practical problems......Page 384
Two useful tests......Page 385
Another common dilemma......Page 386
Appendix 1 Integrated design example......Page 388
Conceptual design issues......Page 389
Dosing issues......Page 390
Safety issues......Page 391
Integrated solution......Page 392
Specific upset conditions......Page 394
“Other than”......Page 401
Introduction......Page 403
Notes on the spacing tables (Tables A3.6–A3.8 and Fig. A3.1A and B)......Page 409
Preliminary electrical area classification distances......Page 415
Size of Storage Piles......Page 422
Between the shell of a pressurized liquefied petroleum gas tank and the line of any adjoining property that may be develope.........Page 423
Between the shell of an liquefied petroleum gas tank and any other facilities or equipment......Page 424
Small tanks (diameter less than 10m)......Page 425
Large tanks......Page 426
Separation from other dangerous substances......Page 427
Underground tanks......Page 428
Appendix 4 Checklists for engineering flow diagrams......Page 429
Consequences......Page 449
Lack of system-level thinking......Page 450
Overemphasis on computer modeling......Page 451
Lack of constraint on creativity......Page 452
Loss of the professional process design philosophy......Page 453
Engineering design textbooks......Page 454
Intuitive approaches and visual representations......Page 458
Relationship between research and practice......Page 459
Research into the engineering design process......Page 461
Research into engineering education......Page 462
Resistance to understanding design from engineering academics......Page 463
The leap from design project to professional design......Page 465
Lack of understanding of professional design techniques......Page 466
Conclusion......Page 467
Improving engineering education......Page 468
References......Page 469
Part B: methodology......Page 472
Exercises......Page 473
Class exercise: a 5m3 tank......Page 474
Rules of thumb for design......Page 475
Grading criteria......Page 476
Learning outcomes......Page 477
Scenario: Jellyholm water treatment works......Page 478
Deliverables......Page 479
Grading criteria......Page 480
Learning outcomes......Page 481
Task......Page 482
Notes to the deliverables......Page 483
Class exercise: pharmaceutical intermediate bulk container......Page 484
Teaching notes......Page 485
General requirements......Page 486
Propellant storage and distribution......Page 487
Formulation......Page 488
Deliverables......Page 489
Grading criteria......Page 491
Further Reading......Page 492
International Standards Organization (ISO)......Page 493
Euronorm (EN) standards......Page 494
Health and Safety Executive (HSE)......Page 496
British Standards Institution (see also H2.0 European Standards for EN standards)......Page 498
Institution of gas engineers and managers......Page 500
American Petroleum Institute (API) standards......Page 501
American National Standards Institute (ANSI) standards......Page 503
AIChE Center for Chemical Process Safety (CCPS) guidance......Page 504
US Department of Labor, Occupational Safety and Health Administration......Page 505
Books and Scholarly Research......Page 506
Glossary......Page 508
Index......Page 512
Back Cover......Page 534