An Algebraic Approach to Incompleteness in Modal Logic [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is a PhD Thesis written under supervision of Professor Hiroakira Ono at the Japan Advanced Institute of Science and Technology.

Author(s): Tadeusz Litak
Publisher: Japan Advanced Institute of Science and Technology
Year: 2005

Language: English
Pages: 143

1 Introduction 2
2 Basic notions 7
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Wolter’s Splitting Theorem . . . . . . . . . . . . . . . . . . . . 18
3 Duality theory and minimal extensions 21
3.1 Basics of duality theory, general case . . . . . . . . . . . . . . 21
3.2 Duality theory for AV-baos . . . . . . . . . . . . . . . . . . . 27
3.3 Conservativity of minimal extensions . . . . . . . . . . . . . . 31
3.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 Non-equivalence of completeness notions 40
4.1 A-inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 wC-inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 C-inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 AV U T -inconsistency . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 T -inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5 The Generalized Blok Alternative 56
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Degrees of wC-incompleteness . . . . . . . . . . . . . . . . . . 61
5.3 Degrees of AV U T -incompleteness . . . . . . . . . . . . . . . 69
5.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6 Subdirectly irreducible algebras 72
6.1 Subdirect indeterminacy of C . . . . . . . . . . . . . . . . . . 72
6.2 Positive results . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 S and master modality based on well-order . . . . . . . . . . . 76
6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7 Strong completeness 80
7.1 Local and global consequence . . . . . . . . . . . . . . . . . . 80
7.2 Application: modal definability for discrete frames . . . . . . . 82
7.3 Second-order character of C-consequence . . . . . . . . . . . . 84
8 Tense logics of linear time flows 86
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2 AV-completeness result . . . . . . . . . . . . . . . . . . . . . . 87
8.3 !C-inconsistency once again . . . . . . . . . . . . . . . . . . . 92
8.4 Aside on computational complexity . . . . . . . . . . . . . . . 94
8.5 The gap between !C-completeness and C-completeness . . . . 100
8.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9 Open problems 104
Appendix A: Algebraic and model-theoretical preliminaries 106
Appendix B: set-theoretical preliminaries 113
Appendix C: Second-order logic and strong consequence 121
References 131
Publications 137