AMAZON STOCK PRICE: VISUALIZATION, FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Amazon is an American multinational technology company that is known for its e-commerce, cloud computing, digital streaming, and artificial intelligence services. It was founded by Jeff Bezos in 1994 and is headquartered in Seattle, Washington. Amazon's primary business is its online marketplace, where it offers a wide range of products, including books, electronics, household items, and more. The company has expanded its operations to various countries and is one of the largest online retailers globally. In addition to its e-commerce business, Amazon has ventured into other areas. It provides cloud computing services through Amazon Web Services (AWS), which offers on-demand computing power, storage, and other services to individuals, businesses, and governments. AWS has become a significant revenue source for Amazon. Amazon has also made a significant impact on the entertainment industry. It operates Amazon Prime Video, a streaming platform that offers a wide selection of movies, TV shows, and original content. As for Amazon's stock price, it has experienced substantial growth since the company went public in 1997. The stock has been highly valued by investors due to Amazon's consistent revenue growth, market dominance, and innovation. The stock price has seen both ups and downs over the years, reflecting market trends and investor sentiment. The dataset used in this project starts from 14-May-1997 and is updated till 27-Oct-2021. It contains 6155 rows and 7 columns. The columns in the dataset are Date, Open, High, Low, Close, Adj Close, and Volume. In this project, you will involve technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. To perform forecasting based on regression on Adj Close price of Amazon stock price, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, MLP regression, Lasso regression, and Ridge regression. The Machine Learning models used predict Amazon stock daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will develop GUI to plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.

Author(s): Vivian Siahaan, Rismon Hasiholan Sianipar
Publisher: BALIGE PUBLISHING
Year: 2023

Language: English
Pages: 355

FEATURES AND TECHNICAL INDICATORS ANALYSIS

DESCRIPTION

READING DATASET AND CHECKING NULL VALUES

CHECKING CORRELATION

EXTRACTING TIME-RELATED FEATURES

VISUALIZING TIME-RELATED FEATURES

VISUALIZING SCATTER DISTRIBUTION

VISUALIZING GROUPED DATAFRAME

STATISTICAL DESCRIPTION AND CATEGORIZED FEATURES HISTOGRAM

ANALYZING YEAR-WISE DATA

ANALYZING MONTH-WISE DATA

COMPUTING TECHNICAL INDICATORS

SOURCE CODE







REGRESSION USING MACHINE LEARNING

FORECASTING ON ADJ CLOSE VALUE USING MACHINE LEARNING

FORECASTING USING LINEAR REGRESSION

FORECASTING USING RANDOM FOREST REGRESSION

FORECASTING USING DECISION TREE REGRESSION

FORECASTING USING K-NEAREST NEIGHBOURS (KNN) REGRESSION

FORECASTING USING ADABOOST REGRESSION

FORECASTING USING GRADIENT