Algebraic Structures

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Serge Lang
Series: Addison-Wesley series in mathematics
Edition: 1
Publisher: Addison Wesley Publishing Company
Year: 1967

Language: English
Pages: 185
City: Massachusetts, Boston
Tags: Algebraic Structures, Abstract Algebra, Groups, Rings, Modules

Contents

CHAPTER I

The Integers
1. Terminology of sets . . . . . . . . . . . . . . . . . . 1
2. Basic properties . . . . . . . . . . . . . . . . . . . . 2
3. Greatest common divisor . . . . . . . . . . . . . . . . 5
4. Unique factorization . . . . . . . . . . . . . . . . . . 6
5. Equivalence relations and congruences. . . . . . . . . . 8

CHAPTER II

Groups
1. Groups and examples . . . . . . . . . . . . . . 12
2. Mappings . . . . . . . . . . . . . . . . . . . . . 17
3. Homomorphisms . . . . . . . . . . . . . . . . . . . . . 21
4. Cosets and normal subgroups . . . . . . . . . . . . . . 26
5. Permutation groups. . . . . . . . . . . . . . . . . . . 32
6. Cyclic groups . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER III

Rings
1. Rings . . . . . . . . . . . . . . . . . . . 43
2. Ideals . . . . . . . . . . . . . . . . . . . 46
3. Homomorphisms . . . . . . . . . . . . . . . . 48
4. Quotient fields . . . . . . . . . . . . . . . . 54

CHAPTER IV

Polynomials
1. Euclidean algorithm . . . . . . . . . . . . . . . 58
2. Greatest common divisor . . . . . . . . . . . . . 63
3. Unique factorization . . . . . . . . . . . . . . 65
4. Partial fractions . . . . . . . . . . . . . . . . 70
5. Polynomials over the integers . . . . . . . . . . 76
6. Transcendental elements . . . . . . . . . . . . . 79
7. Polynomials in several variables . . . . . . . . 84


CHAPTER V

Vector Spaces and Modules
1. Vector spaces and bases . . . . . . . . . . . . . . 86
2. Dimension of a vector space . . . . . . . . . . . . 92
3. Modules . . . . . . . . . . . . . . . . . . . . . . 94

CHAPTER VI

Field Theory
1. Algebraic extensions . . . . . . . . . . . . . . . 102
2. Embeddings . . . . . . . . . . . . . . . . . . . . 105
3. Splitting fields. . . . . . . . . . . . . . . . . . 110
4. Fundamental theorem. . . . . . . . . . . . . . . . 111
5. Quadratic and cubic extensions. . . . . . . . . . 113
6. Solvability by radicals . . . . . . . . . . . . . 115
7. Infinite extensions . . . . . . . . . . . . . . . . 118

CHAPTER VII

The Real and Complex Numbers
1. Ordering of rings. . . . . . . . . . . . . . . . 120
2. Preliminaries. . . . . . . . . . . . . . . . . . 123
3. Construction of the real numbers . . . . . . . . 126
4. Decimal expansions . . . . . . . . . . . . . . . 133
5. The complex numbers. . . . . . . . . . . . . . . 136

CHAPTER VIII

Sets
1. More terminology . . . . . . . . . . . . . . . 141
2. Zorn’s lemma . . . . . . . . . . . . . . . . . 144
3. Cardinal numbers . . . . . . . . . . . . . . . 148
4. Well-ordering . . . . . . . . . . . . . . . . . 158
5. Proof of Zorn’s lemma. . . . . . . . . . . . . 160

Appendix

1. The natural numbers . . . . . . . . . . . . . . 164
2. The integers . . . . . . . . . . . . . . . . . 168

Index . . . . . . . . . . . . . . . . . . . 171